. AD-R159 674 PERFORMANCE EVALUATION OF THE JRS AUTOMATIC MICROCODE 172
GENERATING SYSTEMCU) NARVAL POSTGRADURTE SCHOOL MONTEREY
CA T J NENTON JUN 85
UNCLASSIF1ED F/G 9/2 NL

i _
\ | O B §28 N25
' ““E = k2 g22
—— E m
s = 02
= 1.8

MN
n
=

>
s ~

M'CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS — 1983 -A

3
l
.
[}
1]
\
y

it B QAL L M IR W is B w2

."‘ LS LARAN
N

b

*-

It S S

R AR

RSN LIS LA AT R

PEERACLER GRS b Y ARSI Wiy Jugn, A e ToSphe Tl Nt NS, AT RENRAINTN Pty “Priy By R Snge s

NAVAL POSTGRADUATE SCHOOL

AD-A159 671

Monterey, Galifornia

THESIS

AUTOMATIC MICROCODE GENERATING SYSTEM

Thesis Advisor:

PERFORMANCE EVALUATION OF THE JRS

by
Terry J. Newton

June 1985

Alan A. Ross

OMC FILE COPY

.....

Approved for public release; distribution is unlimited

DU RS
......

-——rTTer v
i S I T T

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEr O R e RN

— VSRR T T T LT T T L AT LA T T L e
: E;-A/‘D’? &7/

&. TITLE (and Subtitle) M S. TYPE OF REPORT & PERIOD COVERED

Performance Evaluation of the JRS Master's Thesis

Automatic Micrcode Generating System June 1985
6. PERPORMING ORG. REPORT NUMBER

(7. AuTHOR(e) T. CONTRACT OR GRANT NUMBER(®) |
Terry J. Newton

.

5. PERFORMING ORGANIZATION NAME AND ADDRESS ~ RROGRAM ELEMENT BROJECT. TASK
Naval Postgraduate School
Monterey, CA 93943
11. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School June 1985
Monterey, CA 93943 3. ;uznun OF PAGES
0
TS MONITORING AGENCY NAME & ADDRESS(IT different from Centroliing Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

e ———————————————————— —
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continus on reverse side If necessary and Identity by dlock number)

microprogramming, microcode, computer performance evaluation,
automatic microcode generation, microoperations, microinstruction
machine dependence, microcode compaction, code optimization,
benchmark

20, ABSTRACT (Continue on reverse eside If y and identify by block number)

The purpose of this thesis was to evaluate the performance of
microcode automatically generated from a high level language.
The performance of the generated microcode was compared to the
performance of Fortran code on the VAX 11/780 to see if any in-
crease in throughput could be attained by using the microcoded
version.

The factors affecting the automatic generation of microcode:
compaction, optimization, cost, and machine (Continued)

DD ,'on'3; 1473 woimion oF 1 nov e8 13 ossoLETR
$/N 0102- LF-014- 6601 1/

]

- & e . .
. . .
4 ’ . '
, * 2
B e
. .
. % . - A
. .

e ———————————
SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)

AIPIMAIE e S aesit o Arn S A v Jueis Jane a dod

SECUMITY CLASMPICATION OF THIS PAGE (When Dete Bntered)

ABSTRACT (Continued)

independence are discussed. This is followed by a definition

of the testing areas, description of the tests, and a description
of the performance evaluation methods.

The tests showed that the automatically generated microcode does
not always out perform Fortran. In general, the Fortran code

was better for mathematical calculations while the automatically
generated microcode was better for bit manipulation and sorting/
searching type applications.

A}

I‘D

S N 0102- LF-014- 6601

2

SECURITY CLASBIFICATION OF THIS PAGE(When Date Entered)

’_.... e -l" 1] -" v.. - .-_-.-, PR .'_..-_ ...\ ';.{\._‘.";.‘_:..‘ '.._) .:. et
.e.'l‘!‘tﬁ!'ﬁtl.t" T R A :qj ST

e
o

o

PO

T T Y L Y L N L Y LY R N LR TN Y W L LY TR M e R A Ta AT R T e TR T AT AT A TR LR

Py
“?

Cs

P Pl
L}

’

2

-
S
. e
* *
) ot

ST NOUN

.l:"

Pt

R a3 l.n'l‘l

LA A
PR R RS

o

e A b

e s A TR L R R R TR N AT R N T T R I S A N R N I L IR A E LRI G A TS S Ve T P o WL T W LT W g
. Ty ~ i qr;;
-

Approved for public releasej distribution is unliamited.

Perforsance Evaluation of the JRS
Automatic Microcode Generating Systes

by

Terry J. Newton
Captain, United States Air Force
B.8., United States Air Force Academy, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

’ NAVAL POSTORADUATE S8CHOOL
June 19683

Author: {M /} : m

" Terry J. Newton

Approved by: aéa—., &‘ A"‘J

Kneale T. Harshall,
and Policy Sctenc

RRR Ay ML SR AR LI gl Rt hrad Mt 1 LSS S At

3
DL
RO
. “','-'J
‘~~--A1
Q- .l‘ .‘.
‘.Q.-}.q
Ld -
PR AT B T S A T N TP L T ‘q. .\\ \51
EA e 4'.'. .‘ DR SO R) N \ ..\\\\\\
NSRS M .‘\-P\ "\ "‘-" 2 '\.p PRI PR ~.'.r -\.ﬁ'—n Yoo \ B 4\4\ ’_._. J\‘\.ﬁ.\ ."’.'v‘:\ :\).‘- A _\‘:\t\:\ XNt ' LRONG

‘ g ST R AV SR T VT C Wl Bl Tl Wty M T Tl DN 0P P R 2 1) Prabcii g et T P B Pt e o e A St Rl
.

y AL
4 R
! .d‘ Lt
] R
- '\‘.\ 4
7,
X NN
B *
i \: 3
N
3 The purpose of this thesis was to evaluate the :}':‘;‘
; A
] performance of aicrocode automatically generated from a ‘f ‘:
high level 1language. The perforsance of the generated ol
3 ASY
A microcode was cospared to the perforsance of Fortran code }S::_:,
. u“\‘-'.
on the VAX 11/780 to see if any increase in throughput \ff‘ !
" - could be attained by using the aicrocoded version. 'T
- The factors affecting the automatic generation of . '.:'.
. _‘.:_...:.
X microcode: compaction, optimization, cost, and wmachine NN
independence are discussed. This is followed by a s
- Y ..',..
- definition of the testing areas, description of the tests, ARK
and a description of the performance evaluation sethods.
] The tests showed that the automatically generated AT
A BTN
X microcode does not always out perform Fortran. In general, ':j;l-:-:
\ . Ml
the Fortran code was better for mathesatical calculations ;:‘-:fj-:}
A
. while the automatically generated microcode was better for e
- AN
- bit manipul ation and sorting/searching type applications. :332::'

8
A
{ll' 5

LS

- -~ Seam ol L rde | - J ,,\,..,.‘.w; ’
; reaicel -l e g), i) T
AMES [Godimade (herseots— U?o/ﬂ 7\

-

A AT Tt AR 0t A A
< n‘\.\..'\\ ChONCNRY S

N,

R T S §
» "“. '\ l-

AR SRR RN ANy) S W S W Shoo L aae I Sui N SEae A Sl G- 0 L T B B A S RPN Y I S g g ey RN DAL i ey S g AN e phy o gan YT Ath o i

I. INTRODUCTION - — = = = = = = = = = = = = = = = = = 9
II. BACKBROUND - — = = = = = = = = = = = = = = = = = - 17

B. MACHINE INDEPENDENCE -~ - = — = = = = = = = = = 20
C. COMPACTION AND OPTIMIZATION - ~ - — = = = = = 23
D. AMBS LIMITATIONS =~ = = = = = = = = = = = = = = 32
E. PERFORMANCE EVALUATION METHODOLOBY - - - - - = 36
F. BACKBROUND SYNOPSIS = — — = = = = = = = = = = 37
I11. PROBRAM BENERATION - = = = = = = = = = = = = = = = 39
IV, TESTING - = =~ = = = = = e e e = = = = - = = = = 47
A. TIMING MECHANISM = = = = = = = = = = = = = = = 47

B. LMJABEFEATLRESAND“-EEFFECTDNTIHIM?-- S0
V. PERFORMANCE COMPARISON = = = = = = = = = = = = = = 36
A. RAWN DATA ANALYSIS8 = = = = = = = = = = = = = = S6
B. EFFECTS OF LANBUABE FEATURES ON THE TESTS - - 58

C. COMPARISON OF TEST RESULTS = = = = = = = = - = 62

i. Integer Mathematics - - - - - = - = - - = 63

2. Floating Point Mathematics - - - - = = - - &5

3. Sorting and Searching - - = = = = = = = = 66

4. Bit Manipulationg - -~ - = = = = = = = - - 69

D. TEST ERROR ANALYSIS8 = = = = = = = = = = = = = 70

VI. CONCLUSIONS =~ = = = = = = = = = = = = = = = = = = 73

; A. CONCLUSIONS FROM THE DATA ANALYSIS - - = = - - 74
S

CNESLNE YA |

PR G TR TR AR ST ‘-0."1 '_-c € T et T T Ve '-‘.'- "-- R SN L e S AR, '.«-". St e T e e .".’A'.."‘. "'..‘.-
N AN P vie s 'e'f.' AT I et e e S e R P P A NN TN AR

Ty o

EREE L R e M £l MR g PRy, R § T e RTINS W, e W L7 2P A AP I PN el el BA LT e a2 i i il g T g N T o SE RSty 4

B. FUTURE RESEARCH POSSIBILITIES - - = = = = - -~ 77
LIST OF REFERENCE§ - - = - = = - el 80
¢ APPENDIX A: INTEBER MATHEMATICS ALGORITHME - - - - - -
X -APPENDIX B: FLOATING POINT MATHEMATICS ALBORITHMS - - - 90
APPENDIX C: SORTING/SEARCHING ALBORITHME - - - - - - - 97
APPENDIX D: BIT MANIPULATION ALBORITHMS - - - = - = = = 108
APPENDIX E: SAMPLE HARNESS SETUP - - = = = = = = = = = 113
INITIAL DISTRIBUTION LIST = = = = = = = = = = = = = - - 119
y
o
6
e N L T N N N R NN

~a

a1)

»

AU

(5
278 2 2 2%

- -
etetu e

[

. .
P A R

AR A SN0

1)

By e ouh Bfc g5 e Dt K 0 e S

LIST OF TABLES

Specific Tests

Test Results

Table of Tests in Appendices

SRR S LN 7 art

(S e R gy pel e rabt it |

& 4

- ® 2w o R ¢ e wle Rt L P TaPs st

e I T T T

ACKNOWLEDGEMENTS l

Thanks are due to Mr. Bob Sheraga for his assistance in
explaining the VAX 11/780 msicrocode and eicromachine. He
also performed the compaction of the HLL wmicrocode.
Without his expertise and assistance, the compaction would
not have been accomplished and that part of the testing
would have been lost.

Lt. Col. Ross was very supportive during the entire
project. His guidance and support, along with his probing
questions, were very important in finishing the paper.

Most importantly, I thank my family, Karen, Chad, and
Lisa, for their support and understanding during the period

while I was writing this paper.

- ‘e ". ‘.‘ .I- ..- " \.‘-
RGO C A O TR

[
a e

E{x‘!’\!‘.-,."‘-..-.. LN A AT AN A gt A A A A B Tt s et e Bl A S O S -t o o S o it e T‘-h.-v\vvm‘vvr

I. INTRODUCTION

One of the problems currently being studied by the
Naval Research Laboratory (NRL) involves the processing of
frequent and complex sessages from satellites. The
processing of these sessages requires a high percentage of
bit manipulations which uses a large amount of central
processing unit (CPU) time. The currently available
computers do not have sufficient capability to perform this
processing in a timely sanner. There are several options
available to the NRL for improving the situation. One
option is the use of a very fast computer, however, the
cost of such a computer is very high. The purpaose of this
project is to evaluate another less costly option using an
automatic microcode generating system (AMGS).

JRS Research Laboratories Inc. has developed an AMGS
which generates microcode for the writeable control store
(WCS) on the VAX 11/780. The JRS AMES was developed to
provide a low cost technique for algorithm implementation

which provides the performance of microcode, yet does not

require detailed machine level microprogramming. The JRS
AMBS is a software package that generates microcode from a
high level language (HLL), thereby eliminating the need for
the programmer to be concerned with the details of

microcode. The user, therefore, need not understand

9

EAL DAY | LA SRR) IS

microcode programming and may apply the principles of
software engineering through the use of an HLL. Figure 1-1
(Ref. 1: p. 3391 shows the steps involved in generating
microcode from the HLL using the AMBS. It is important to
note where the AMBS is machine independent and where it is
sachine dependent. This will be important in later
discussions of the system.

Since the target machine of the JRS AMBS, the VAX
11/780, is a horizontally microprogrammed proc=ssor, it is
capable of executing a number of operations simultaneously.
This is the key ingredient to improving the speed and
efficiency of the executable code because several
microoperations may be executed concurrently. [Ref. 1: pp.
558-5591 By applying the JRS AMGS to the data manipulation
rnquirqm.nts of the satellite communication problem, a
reduction in required CPU time should be achieved.

Since the current method used by NRL for implementing
the algorithms is to write them in Fortran, this project
will compare the execution speed attained using the AMGS to
the execution speed attained using Fortran code. The
results of this comparison will provide an understanding of
the type of algorithms that are suitable for implementation
via the JRS AMGS, the performance improvements to these
algorithms, and the costs of using this implementation
techni que. This study is based on two aspects of computer

science: microprogramming and computer performance

10

MACHINE
INDEPENDENT

e N N N e T S T L ey,

HLL SOURCE
PROGRAM

HLL COMPILER

MACHINE
INDEPENDENT FORM
(IL1)

LISTING

MACHINE
DEFINITION
CRO FILE

A

MICROCODE GENERATOR

SOURCE
MICROPROGRAM

Y

MICROASSEMBLER

AMGS
RUN-TIME
ROUTINES

USER
APPLICATION
PROGRAM

OBJECT
MICROPROGRAM

'

AMGS
APPLICATION
INTERFACE

LISTING

LOADER

.........

-
& e e

o,

DAY * .
A, S L SRR

MICROPROGRAM IN

THE USER WCS

Figure 1-1: AMGS Operation

11

", o
at et

MACHINE
DEPENDENT

5

K »
a ‘.\

I R R R R N L A R A, S R A TR T RL L L R ER LIV T e
» g . . Ll e

evaluation. Before the study can be described, these two
areas sust be defined.

Wilkes defined sicroprograsaing as a aethod of
isplesenting the control function of a computer. [Ref. 2:
p. 391 The sajor advantages of amicroprogramsing are:

1) Low Cost: Microprograsming allows large instruction
sats to be implemented at a low cost because of the
simple design process. Developing a hardwired design of
an equivalent system would be very expensive.

2) Flexibility: With msicroprogramming, it is possible to
change the instruction set or to introduce a new set
after implementation. This may allow a computer to be
useful for sany more yesars than originally planned.

3 Bimplicity: Microprogramaing allows for simpler
development due to the decrease in internal circuitry.
This siopler design facilitates maintenance and reduces
the problems associai.d with upgrading the design in the
field.

4) Speed: Although wmicroprogramming is slower than some
hardwired designs, a microprogrammed implementation will
run faster on most algorithes than an equivalent sachine
language implementation. This is due to the machine
language fetch and decode overhead. [Ref. 3: p. 5]

A major disadvantage of microprograsming is the memory
delay penalty for fetching each microinstruction from the

control store. This fetch penalty can result in slow

12

Rt 2 g o o 3

execution times if not dealt with properly, but the problem
can be made less significant by providing an overlap
between the fetch and the execute portions of
sicroinstructions. [Ref. 3: p. 3]

8ince this project is concerned with comparing Fortran
code with microcode, it is important to review the
tradeoffs between using Fortran (or sose other HLL) and
microcode. Prograssing in wmicrocode is very tedious and
complex because the prograsmser sust deal with the details
of the machine, However, it is this complexity of
microcaode that can, through proper programming, lead to a
speed advantage. On the other hand, Fortran and similar
HiLs are not nearly as complex because the d.tailp of the
machine are handled by the compiler. The slower execution
spead for HLL’s results from both the generalization
required in the code generation portion of the compiler and
the instruction fetch decode penalty described in the
explanation of the microcode speed advantage.

Hicroprogranninq; in its present state, may be used to
provide efficient implementations of the control function
on computers. While not providing the fastest execution
speed possible, microcoding will provide a given level of
throughput at a cheaper price than is otherwise possible.
In addition, the speed of microcode has recently improved
because of the devel cpment of fast, inexpensive

semiconductor memories. These are the two main reasons to

13

..................

AN 5 A R A RN NG #?>'«?-?{;as AN, x,.sfin;x.txALxLx;\LrL\QQ]

)
*
l
t
&
‘

suggest that the AMBS can give a perforsance advantage over
Fortran source code.

S8ince this study involves the evaluation of the
perforasance of amicrocode, it is important to review the
relevant perforsance evaluation techniques, »sethods, and
prableas. The perforasance evaluation in this study is a
comparison between different imsplessntations of the same
algorithm. The classic application of perforasance
evaluations is on operating systems to determine how to
improve the system. To achieve the comparison, the
evaluators must define a benchmark which represents the
type of workload that occurs on that system. Defining this
workload properly and accurately is very isportant or the
results will be invalid. In the case of this study, a
sajor consideration is the definition of the algorithms to
be implesented and compared.

One option when picking the algorithms is to choose a
very specific application area and test only within that
area. Another option is to attempt to test the entire
realm of possible applications which would take many
different algorithams. In Chapter Three, the application
areas of interest will be defined and the subsets of these
areas to be tested will be identified. The tests will be
as comprehensive as possible and will cover as large an
area as possible, however, exhaustive testing of the entire

realm of applications is not possible.

14

.t

PR DT A R RN

e ".. ,'_" ,'_._. _______ .. . - - .‘--".o-'.-.: PO AR AT -. _‘-. RS '.._-_.'-,-_-_.‘-_.-."' .- -'_. . _~_-_‘...‘_-.
. TN -.-.s'--. oy S T S \x\ ***‘-..-;-:'5"1}?-"-.4-\'- -.-.-.'-.',-.',-._‘_\'\‘J

CRANCIMEII I e R, it S iy M Saiie ‘ol b TR N e Stk ¢ i Tl b AR 3 -c.‘T

The evaluation technique will consist of implesenting
the algoritha in both Fortran and in the AMBS HLL. Both
the Fortran and the HLL codes will be executed, timed, and
the execution times will be compared to determine the
change in performance with the HLL asicrocode version.
Since the algorithms are grouped according to application,
it is possible to determine which applications have
increased throughput from use of the AMGS.

Several contributing factors sust be considered during
this performance evaluation. The effect of using an HLL
instead of assembly language or direct microprogramming to
implement the amicrocode version is significant because of
the costs involved in using each method. Similar costs are
associated with all HLlLs, be it the JRS HLL and'its
associated compiler or Fortran and its resul tant
translation. Likewise looking at the wmore primitive
languages of assembly code and microcode, the costs of
programming in both languages are very similar. However,
not so obvious is the tradeoff involved in choosing one
type of language (high level versus low level) over
another. The specific compilation techniques may also have
an eaeffect on the efficiency of the product and must be
considered. The microcode compaction method used will
certainly affect how fast the microcode executes. A
performance evaluation must analyze many factors, both

individually and combined, to produce valid results.

135

Chapter Two is a discussion of the issues of AMGS
design, compiler technique, code generation, and code

optimization. The purpose of this discussion is to assess

RNy (NN NP (I

the effect each item has on the entire system so that
during the evaluation of the AMBS these factors can be
properly analyzed.

Chapter Three describes how each program was generated.
Because the AMEBS is being evaluated for all applications,
this chapter defines the basic areas that are tested in the
project. After the basic areas are defined, the specific
tests developed to cover these areas are explained and the
information to be gained from each test is ocutlined.

Chapter Four explains the wmechanics of the testing
including the timing mechanise and the effects of language
features on the tests. An analysis of possible sources of
errors is also included here to explain the validity of the
results.

Chapter Five compares the data from the tests and
analyzes the results. A step-by-step explanation of the
testing is enumerated to insure a proper understanding of
why certain tests were accomplished. The last chapter
summarizes the results and makes deductions and

recommendations for further research in this area.

16

...........

E’\‘i DRI S W AR R B IRy Bre Doy TARLD Ay By Pl o D i Jpag geal St Sual hanspnglv Zp 1) G S NEA A T LD SO LRI LA S AL st RIS b Ais M R A M AR R R |

I1. PACKGROUND

With the wmsany advantages of microprogrammed computers
there is no apparent reason why aicroprogramming should not
be used for most applications. Low éost, fast execution
time, and simplicity of design sound like exactly what a
computer designer desires. There is, however, the problem
of developing the microprograms (commonly called firmware)
for the cosmputer in a reasonable amount of time and with

reasonable cost. Developing +firmware bhas been a costly,

\ error prone, and slow process because it has been done
manually and because of the details that must be handled by
-, the microprogrammer.

The obvious answer is to eliminate the use of low level

8 languages and place the microprogrammer into the world of

L high level languages. That is the intent of the AMGS.

However, along with the advantages of an HLL come problems
and considerations that cannot be ignored. This chapter
will explore the many considerations of the AMGS and
discuss their impact on the JRS AMEBS. The following topics
are considered to be the most relevant and will be
discussed in depth in this chapter: 1) High Level Languages
and Microprogramming, 2) Machine Independence, 3)
Compaction and Optimization, 4) JRS AMGS Limitations, and

S) Performance Evaluation Methodology.

.17

.~....'.~.".’..‘;." N~ PO SN T R
» -~ - - .'- . l. ot . - . .h .. ‘h DDDDD ¢ .b i
.’.‘m_l_L A.A - '_n%_‘~..4 L':_‘n")m,s} u".h ‘h_. . -.'.A\ ‘ "..n\.n

Cal % e.._n,’)'AVl-. R G TN

A. HIGH LEVEL LANBUABES AND MICROPROGRAMMING

Higher lavel languages are designed to simplify
programming by isolating the programmer from the details of
the sachine and placing him at a higher level of
abstraction. An AMGS removes the programasr from the
details of wsicroprograsming and allows the programmer to
write the code in an HLL. Writing a program in an HLL
takes ouch less time than writing the same program in
microcode because the prograsser msust deal with fewer
details. There are wmany studies that have shown the

advantages of using HLLs instead of assemblycode. One such

study claims that a prograsser produces a set number of
;; lines of code per day, independent of the type of code.

Since one line of HLL code will produce many lines of
- microcode, it is 1logical to opt for the HLL if all other

factors are equal. [Ref. 4: p. 145]

However, all other factors are not equal. Since the
HLL used for generating the microcode is a special purpose
language, any program written to use this system must be
translated +from another language before it can be used. In
this particular case, the time required to program in the
HLL provided by JRS must be considered. 0Of course the time
required to translate the algorithm to the HLL should be
much less than would be required to translate the algorithm

into assembly language code or into microcode. Since the

JR8 HLL is a language heavily influenced by the block

18

structure of Algol, Fortran, and Pascal, any algorithas
written in a block structured language should be sasy to
translate to the JRS HLL.

Software engineering literature provides sany reasons
for using HLLs. One such reason is that HLLs provide
security not possible using microcode or asseamblycode.
Forced typing of variables is one exasple of the security
praovided by HLLs. High level languages also provide
features such as subprograms which are an advantage because
they assist the user in subdividing the program into
logical units. These logical units make the problem esasier
to understand and handla.

The chief advantage of an HLL is the esase of program
maintenance which results in lower life cycle costs for a
program. Program changes can be very expensive if the
programmer aust read and understand low level code, with or
without good documsentation. Through use of an HLL, program
changes can be made much more quickly and simply, with
reduced costs.

The advantages of HLLs are all ’nice’ for the
programmer, but it is important to consider the
side—effects of HLL usage. 1§ the advantages of an HLL
detract from the advantages of microprogramming (i.e.-
simplicity, cost, flexibility, speed) then using the AMGS
may not be justified. On the other hand, if the AMGS

eliminates or wminimizes other problems of microcode, then

19
.
---------------- AN .4".-'-.-' ot '.'.'.-.'."'.-'".'.'-"'.--' .'.ﬂ.' o LT T T e TN T “‘\.‘~ NN R N ‘:.\..' vt AN
N N N A R N N A R N O \'.\‘\. '.'3'::5‘:}'.)":\i&iﬂ\ifi‘,‘.\i;':;';\':.\":\":

"
.'

. -
FArArdry

KA O >

T
« a4 ap

L}
.I' ..‘ ." ." ." -" . b .

the AMBS will becose even more desirable. One such
undesirable property of aicrocode is its sachine
dependence. In the naxt section we will look at the effect
of using an HLL on the machine dependence of the resulting

microcode.

B. MACHINE INDEPENDENCE

Machine independence is a major concern during the
development of an AMGE because of the desire to make
firsware portable. The AMES is a tool used to help achieve
the goals of machine independence and portability. Machine
independence and portability are desirable characteristics
for any computer language because if the code may be used
on more than one computer, the overall firmware development
costs will be lower. If every different target machine
must have its own version of the alqoﬁithn written
specifically for it, then the cost of program development
will be a function of the number of target machines. A
much more desirable method is to write one program that may
be used on every machine resulting in only one program
being developed.

A machine dependent language is "a language in which
all operations and data elements defined in the langdagc
have a direct mapping to a resource of the target machine."
(Ref. 3: p. 1941 The actual microcode is such a language

because it specifically addresses the available registers

20

QR A e " Te T e %\ " e e N T T N e N LT e T e T e AT e

o

o et e
-"' -" LR N R

. el . o R T T e O L T T S T R T,
X ‘...\'.N '_'-" I‘..q' o o. o e '~ et .0 q'\.- I“\n . \.\ o -\ .~ »\-\ A

e L e R S L P R Ry

of a wsachine. To resain sachine independent and avoid the
problemas of asachine dependence, a language sust avoid the
details of the target machine and resain general enough to
not become tied to any specific instruction set. This can
be accomplished by defining an overall class of machines
and fhon writing the language to fit into that definition.
Such a definition includes such items as the minimum number
of registers, the minimum stack size, and other hardware
related items. Capitalizing on the similarities and
avoiding the differences of the amachines in the class
simplifies this task. Any item that is not common to all
machines in the class must not be included in the
definition because it can not be supported by all machines
in the class.

The AMSS supports machine independence and portability
of microcode by providing an intermediate language and an
HLL that avoids the direct mapping to the machine
resources. Since these two components of the AMGS are
machine independent, a user may write a program in the AMGS
HLL and then use the code on different target machines.
The major problem is making the transition from the machine
independent intermediate language to the tarqct‘machine’s
microcaode. To achieve this, each machine requires a
separate code generator to translate the intermediate
language to the microcode level plus a compactor to compact

the resulting microcode. This is not a trivial step and

21

el e¥a¥a"a

¥l XA

P N

Xt Yo W a8 LY Th Ga Sl s e B e W W e B @ W T T A e A el 4

there is currently considerable ressarch being conducted on
microarchitecture description techniques that will assist
in making this step easier. Geiser has introduced a
description methodology that covers four basic areas:

1) Microinstruction description: includes the format of

the microinstruction, fields used in the

microinstruction, and possible values in each field.

2) Element descriptions: describes and nases elesents

of the machine hardware including memory, registers, etc.

3) Microoperation usage rules: a set of rules for

constructing valid msicrooperations.

4) Microengine behavioral rules: specifies interactions

between the microoperations. [Ref. & pp. 517 - 5211]
By using this technique it is possible to describe the
target machine in a standardized furnat 80 that the writing
of the machine dependent code generator is msuch easier.

o+ course the description methodology does not

eliminate the problea. The main purpose of a description
-thOQOloqy is to reduce the work required to port the
language to another machine by maximizing the common
features of the different wmachine dependent languages.
This may eliminate desirable machine d.p;nd.nt features but
it does permit a ’hnearly msachine independent’ language.
The assumption is if you cannot be totally independent then

be as independent as possible. [Ref. 35: p. 193]

22

LA PAINNE (3 R0 e g

Dr""r‘v"‘
K

; AL '_7' p,

True machine independence has not been achieved in this
AMBE and probably will not be achieved in the near future,
however the amicroarchitecture description methodology is an
attempt at reducing the portability problem. By providing
a systematic description of microarchitectures, the
description methodology reduces the amount of work required
to move a system to another comparable machine. The AMGS
is providing a step toward an ultimate goal of machine
independence that may never be achieved. However, the AMGS
has helped to define and simplify some of the steps
invol ved in making microcode generation less machine

dependent.

C. COMPACTION AND OPTIMIZATION

Before reviewing the current campaction techniques it
is important to 'understand the difference between
compaction and optimization. Microcode compaction will
reduce the space required to store a program but does not
guarantee a reduction in the speed of execution.
Optimization, on the other hand, results in a reduction in
execution speed but does not guarantee that any code
compaction will occur. Sometimes execution time will
decrease when the code is compacted, but the reduction of
execution time is not guaranteed, in fact execution time
can in some cases increase. The only conclusion that can

be drawn is that successful compaction guarantees fewer

23

.....;¢_.a.1...!~-!-4_*_' 3 i S ™ A, r s S X T A S -J&.L!—l,_i.\a, e N T T TR T W T T L L

total instructions and wmay lead to faster or possibly
slower execution speed.

Most HLL compilers do include an optimization step,
however, the present version of the JRS HLL compiler does
not. There are two reasons for this. One reason is that
excessive optimizations prior to microcode generation can
sake error correction very difficult because of the
movesent of the microoperations. Secondly, since this was
the first production version of an AMGS, some of the more
difficult probl ems were not handled. Optimizing the
compiler without excessively affecting error correction is
one of the more difficult problems. The AMGS does as a
whole include a number of optimization steps designed to
produce more efficient microprograms. An example of such a
step is the use of registers to hold array offset ad&resses
to help reduce memory fetch delay. Even though none of the
common compiler optimization techniques are used in this
system, it is important to discuss them here to understand
the effect they could have on microcode compaction.

Gries gives a good explanation of the four main
compiler optimization techniques that are applicable to
almost any algebraic programming language such as Fortran,
Pascal, Algol, PL/I, etc. The four methods are:

1) Folding: for any operator whose operands are known at
compile time, perform the applicable operation at compile

time rather than at execution time.

24

..........
et

o«

—\V.‘V.‘r'.‘<.~‘::"j.}-'-.i: hCRCA IO O - . - RS A RSAA A S A M a EE MRS S .‘-?

2) Eliminating redundant operations: mainly factoring out
common subexpressions.
3) Moving operations out of loops if their operands do
not change within the loop.
4) Reducing the number of multiplications in loops:
effectively changing the multiplications to additions.
C(Ref. 7: pp. 376 - 3771

A system may use these techniques to attain whatever level

of optimization is desired, however there is a tradeoff

between the level of optimization and the time required to
perform the compilation. Also as mentioned above,
extensive optimization will result in radically altering
the sequence of operations and therefore make debugging
{;Z very difficult. [Ref. 7: p. 3761

E Even though optimization is important, there has been
very little work done on optimization of microcode. Almost

3 all of the work done on microcode has been in the field of

compaction because optimization of microcode is very
difficult ¢to do systematically and is not well understood.

Most microcode compaction research has been justified by
the assumption that execution time will decrease when the
code is compacfcd. It is important to keep this assumption
in mind when discussing compaction because the results of
the compaction are not guaranteed to reduce execution time
and will certainly not optimally reduce execution time.

However,

compaction is the only automated method for

25

o

improving sicrocode that is currently available for

LR

practical use.

It is important to remsesber the assumption that the

D

target machine will be horizontally aicroprogrammable,

',-’ g el

meaning that more than one operation may be executed during
any microinstruction. If the target machine is not
horizontally wamicroprogamaable, then only one microoperation
may occur during any microinstruction (or machine cycle)
= T and compaction is not possible. There are two classes of
: microcode compaction for horizontally memicroprogrammable
computers, local and global, and a discussion of the
compaction techniques +from both classes will follow. JRS
does not do any code compaction in this vorsion of the
AMGS . However, by reviewing the many methods of compaction
- available it will be evident which methods are the most
i promising for future improvesents.

Local compaction of wmicrocode is concerned with the
- reduction of the number of microinstructions in a
- straight-line code (SLC) segment of a microprogram. An SLC
segmaent is any sequence of microinstructions that begins
either at the start of the program or after a branch
statesment and ends either at the end of the program or at a
branch statement. Only one entrance and one exit is
allowed in any SLC segment. Local compaction is simply an

attempt at reducing the number of microinstructions in each

SLC segment by combining instructions or eliminating

LS

26

@ .
& - & &

A TP IS SR I R R I -
A L “‘\.'.."f.‘:".’ -.1’\ * » \" " w’

X i

duplicated instructions. The most promaising and popular

versions are first-come first-serve, critical path, branch
and bound, and list scheduling.

First-come first—-serve is probably the simplest form of
local compaction possible. Each aicrooperation is
considered only once, in source code order, and in the SLC
sagment that it exists. Each microoperation is moved as
far forward in its segeent as possible. If it can be
combined with a previous operation without causing a
conflict, then it will be combined. Once a microoperation
has been checked and combined or not combined, it will
never be considered again. This results in fast compaction
but the resulting wmicrocode is not optimally compacted.
[(Ref. 8: p. 415]

Critical path algaritﬁns compact microcode in each SLC
segment by identifying wmicrooperations “that cannot be
delayed without increasing the numsber of microinstructions
neaded for the microprogram.” ([Ref. 8: p. 413) This is
accomplished by first identifying the longest paths in the
data dependency graph. Each of the longest paths is called
&4 critical path and shortening the path will result in a
more compact program. Each amicrooperation in each critical
path is checked to see it if can be moved forward and
combined with another microoperation. If it can be moved
forward, the critical path will be shortened and the result

is & more compact program. If any microoperation in any of

27

the critical paths is delayed (not forwarded as auch as
possible), then the trailing wmicrooperations will be
delayed, which will result in more microinstructions than
are actually needed and less compact microcode. [Ref. 8: p.
4221 Once again the results are not optimal and the time
required to do the compaction is a polynomial function of
the number of microoperations which are considered in each
SLC segment.

Branch and bound algorithms can guarantee optimality in
storage space required for the microprogram. Remember that
this says nothing about the execution time of the program.
The method depends upon searching a tree structure
exhaustively, looking for the optimal ordering. This
method may produce optimal compaction, but the time
required is an Q*poncntial function of the number of
microoperations in the microprogram, making the method very
expensi ve. There are variations to the branch and bound
algorithms that are not so expensive. One such variation
involves pruning the tree structure prior to searching the
tree. This pruning reduces the cost of the algorithm to a
polynomial Ffunction of the number of input microoperations.
However, the reduction in cost also produces less than
optimal microcode. [Ref. B: p. 424]

List scheduling searches through each SLC segment and
attempts to schedule each microoperation at the earliest

possible point within the window of code that is being

..........
A A
VIR IO I P

ey ™

Ra? A iR P g . g B i A = Rt i it g S M g i g i A e A S N = Pl At ‘e o R

considered. The size of the window is variable but the
larger the window the longer the time required to do the
job. Also, as the window size is increased, there is a
diminished return (diminished amount of code compaction)
for each unit increase in window size because of the
increased chance of finding a data dependency. The further
away the compaction is attempted, the greater the chance of
two data items needing the same register, or some other
data dependency. lList scheduling is not optimal, but the
cost is as low as first-come first-serve and the results
are better than first-come first-serve.

0f these four local methods, only list scheduling and
first-come first-serve can be done in what is considered a
'reasonable’ amount of time and produce acceptable results.
The fact that list scheduling produces better results than
first-come first-serve in general was shown in a study done
by Davidson, et al. [Ref. 8: p. 4460) This would justify
the use of list scheduling as the compaction method for the
AMGS if only 1local compaction methods were available,
however there are global compaction techniques that should
be considered. It is an intuitive notion that global
compaction techniques should provide better compaction
since they look at the entire program and not only at small
SLC segments.

It is true that, in general, global compaction

techniques provide better compaction than local compaction

29

S AL e EA IR S B A N - Lelw e T Y LT e LA e - P i 2t - Ve P W o oW P . i bty

........
LR

'y ’}--;--'-- ;.‘ - - ..- T - :.‘ - '.n ;q‘ AT VR il T" ttttttttttttt - - .' -.‘ -“ L T A T L L -0 \' .. -~;
D SO Y Y A O A A W W =

L > -, & g - * [P —— e - T ———-— -

techni ques yat, in coaparison to local comspaction
«. ‘hniques, global compaction techniques are very
expensive. Trace scheduling, tree compaction, and
compaction bassd on a generalized data dependency graph
(BDDB) are the three msost promising global compaction
techniques. Trace schedul ing identifies the most
frequently traversed path through a section of microcode
and does a local compaction on that path. The process is
repeated on all of the paths through the microprogram until
no further wmicrooperation movesment is possible. A data
dependency graph sust be constructed for each path analyzed
and any microoperations that are moved must be documented.
This docum.ntatian is done to insure that the moving of
microoperations will have no effect on other loops. The
bookkeeping for trace scheduling is the most expensive
part. In fact in the worst case, the memory required to
run a trace scheduling compactor can grow exponentially.
(Ref. 9: p. 4801 Therefore, although trace scheduling does
an excellent job of microcode compaction, the overhead is
too high to justify its use.

Tree compaction is based on trace scheduling. The
advantage of tree compaction over trace scheduling is the
control of the increase in memory size. Tree compaction
divides the microprogram into subsets and applies the trace
scheduling techniques to the subsets individually. This

achieves compaction that is close to the results achieved

30

. S oa w” . RS Sy
R S L R U (o § O R A, W LY

-

...........
...........

S SR N

T T TR TR T
RIS ARt R

......

......

by trace scheduling yet is not nearly as expensive. This

method may be useful when it is +Ffully researched and
understood, however tree co-baction still produces
microcode that is less than optisum and the cost can be
high.

The third global compaction method is based on a global
data dependency graph (6DDG). A GDDG “is capable of
representing in a single chart the data dependency of
microorders not only within a basic block but in different
basic blocks."” C(Ref. 10: p. 924] Both trace scheduling and
tree compaction use a data dependency graph (DDG) to
represent the data dependency of microorders in the basic
blocks, however a DDG is not capable of representing the
data dependencies beyond the basic block. This is the most
important aspect of global compactioni moving microorders
to adjacent blocks when possible.

Through use of the 6GDD8, it is possible to identify
microoperations that ’must’ be in a basic block and those
that ’may’ be in a basic block. Then, by identifying the
frequency of execution of the separate blocks it is
possible to make intelligent choices about moving
microoperations from block to block or within the same
block. The algorithm costs an amount which "is practically
O(n), where n is the number of microorders contained in a
source wmicroprogram.” [Ref. 10: p. 930] This is a very low

cost and the preliminary results show that the algorithm

31

.....................

v

v wwy

R T

provides coapaction that is within three to five percent of
optisum (handwritten) microcode.

Of the three glabal'co-pactian mathods described, only
the aesethod based on an GDDE8 is efficient and results in low
costs. Why then did JRS not use this compaction sethod in
the AMBS? The answer is that during development of the
AMBS, this compaction method was not available. JRS is
currently revising the system to incorporate the 6DDG
global compaction technique, which should result in a much
more efficient system than was evaluated in this study.

By 1looking at the two main compaction methods, global
and local, it is evident that global compaction holds the
most promise for efficiency that approaches the optimum.
Once global compaction methods are more thoroughly
researched and developed, they will become the logical
choice if the cost can be controlled. Global sethods are
the only amethods that approximate the handcoded versions.
Local compaction does provide some compaction but does not

in general do as well as handwritten asicrocode.

D. AMGS LIMITATIONS
The AMBS8 developed by JRS is designed to allow a small

CPU intensive algorithm to be compiled in microcode and

placed in the WCS of the VAX 11/780. When the algorithm is

needed it can be called from a Fortran program. There are

several limitations of the system that are important to

32

IBRAaE . AGRENGRIE gRam g L i S gr

C:
:

-.-, '---ﬂgﬁ.
RPN AR AL AR]
.
O

remesber when considering what applications say be used on
this systems. Individually the lisitations msay seea saall
and even unimportant, howaver, the combined effect of the
limitations may eliainate some of the applications.

First, the WCS only has 1K words of msemory for the
sicrocode. Since the microcode must be loaded into the WCS
before execution due to linkage requirements, paging of the
algorithm into the WCS during execution is not considered
an option. Therefore the user is limited to an algorithm
or collection of algorithms that is no larger than 769
microinstructions because the other 2353 instructions are
used for predefined functions. In fact, of the 769
microwords of memory available, about 30 instructions are
already taken up by function entry and exit code that is
required for register initialization and can not be
modified by the user. The exact number of instructions
varies depending upon the amaicroprogram being executed.

Compacting a 1long algorithm ¢to fit into the limited
space Of the WCS may be difficult or even impossible. Once
the user has determined that the algorithm will fit in the
WCS, then he/she must determine the ’hot’ spots of the
program (portions of the algorithm that use the most CPU
time), separate those parts of the program from the rest,
code those parts in the JRS HLL, and set up the microcode
procedure call. This wmay be only a minor inconvenience

but, it is extra effort needed to use the AMES.

33

A OO . o TN MO A SN LI P FE INC OV G PR A i A iy A /e AR SN e A VP ot g et S e g ool b poh San g-a mug ar

Ve ta ® T, s =

Second, JRS claims that the AMGS code will do integer

»

.
-
-

—~

aritheetic and comparisons very quickly, but any problem

involving primarily floating point arithmetic will achieve

R O

Nttt
-

minimal, if any increase in performance. This is because

the JRS HLL uses the same floating point acceleration

Oy AR

routines as the Fortran program. Portions of the floating

point algorithm that do not use the floating point

-V YT
P

accelerator may execute faster when executed on the AMGS,
but the net gain will probably not be very large due to the

overhead of the floating point accelerator. During the

K.
lf

testing of the AMGS the truth of this claim by JRS will be

documented since there will be several tests to check the

floating point accelerator performance.

The JRS HLL is set up to support only integer and
floating paint data structures. No character data
structure is available and therefore applications using
characters are not considered feasible. Arrays of integers
and floating point numbers are possible but the lack of a
character data structure will limit some applications or at
least make them very difficult to do.

I1f the algorithm includes 1/0 then the algorithm must
be rewritten to eliminate the 1/0 from the portion of the
algorithm to be coded in JRS HLL since the HLL does not
include any 1/0 statements. The I/0 can normally be moved
into the Fortran program that will call the WCS program.

Besides providing an 1/0 function, the Fortran program will

34

LA i ain e ——r

AR I S Tae I)

sat up any data structures needed for the program. This is

really no more than a wminor inconvenience, but it does
complicate the use of the systea.

Several other restrictions are listed in the AMSS
manual and repeated below.

1) Combined maximum of fourteen arrays and compiler

temporary variables.

2) HMaximum of twenty DO-loops nested at any one timse.

3) Maximum of five hundred symbols may be defined in a

program. |
These restrictions will not, in general, eliminate
applications but they are restrictions based on the
implementation of the system on the VAX 11/780. These
restrictions are important because they point out some of
the wmachine dependencies that exist even when an attempt is
made to remain machine independent.

The final limitation of the JRS AMGS is a simple
observation. One of the main motivations for having an
AMBS is to allow for portability of the microcode.
Presently, this system is only implemented on the VAX
11/780. Therefore, a current, yet hopefully temporary
limitation is that the AMGS has not been programmed to
generate microcode for any other machines. This limitation

will result in eliminating many of the advantages of the

AMBS if it is not corrected.

o

DAL S g o NG AL S AR i S SN AP i SPGB g S I N S A Sl I AR i M M Al S AL it b sl tab sl Sty |

Assuming the application algorithm can be coded around

(Rt Rty
AP B tar
g

ﬂ

these limitations, the user should be able to achieve

better throughput by using the AMGS. A goal of this
project is to make it esasier for a user to determine if a
potential application will benefit from the use of the
AMEBS.

E. PERFORMANCE EVALUATION METHODOLOGY
The performance evaluation was conducted to determine
the throughput possible using the AMGS. There are many
techni ques available for doing performance evaluations
i; including hand tiwing, formula methods, instruction mixes,
and benchmarks, each having individual advantages and
ﬁ: disadvantages. The method used for this evaluation must be .
ii capable of comparing two different programs and of giving
accurate results. Therefore a collection, or benchmark of

programs was defined with each program representing a

different possible application for the AMGS.

: This kernel of programs was carefully developed to
contain the characteristics of the many possible algorithms
which might be run on the system. This is a very important
step for the validation of the results. If the proper
program characteristics are not tested, the results will be

invalid. By cateqgorizing the algorithms according to

“f application it is possible to specify what applications

will benefit by use of the AMGS.

.....................
....................

.....

''''''''''''''''''

R A I S I S o Sl AN AP SCIC I Al M SAet Sac it e Sia ah

After defining a kernel of programs and coding them in
both Fortran and the JRS HLL, the programs were run and the
results compared. Besides comparing execution time, other
factors previously discussed in this chapter were
considered. Ease of programming, system reliability, and
the compatibility of the application problem with the AMGS
were also considered.

One important question is how much better a manual
microprogrammer could do. The purpose of using the AMGS is
to achieve increased throughput without using a large
amount of programming time as would be required with the
manual methaod. Even though manual microprogramming is
costly due to development time, it is considered the
standard and the results of the performance evaluation
should be compared against the standard. By comparing all

three execution times, Fortran, JRS wmicrocode, and hand

} written (actually hand compacted) microcode, it will be
possible to identify the best applications and possibly

determine methods for making the slower applications

T

faster.

F. BACKGROUND SYNOPSIS
{ Since the main factors affecting the AMGS have been
i reviewed, the next step is to determine the kernel of

f praograms to be tested. These programs must be

representative of the applications that might be -used on

A A oS o o ub SR s uB o g

the AMBS. The purpose of defining this kernel is to attain
general results that will give an AMBS user an idea as to
gh. effectiveness of a specific application. The next
chapter will discuss the applications to be tested and the

programs usaed to test those applications.

III. PROGRAM GENERATION

There are many limitations that must be considered when
choosing the proper benchmark for a system. The benchmark
must take into consideration the AMGS limitations
enumerated in the previous section and insure that the
results are not biased by those limitations. Limitations
such as the WCS size and the existence of only integer and
real data structures have a major effect on the
applications possible when using the AMGS. With these
limitations in mind, it is possible to define some
applications that can use the AMGS. One common computer
application that will definitely not bhave increased
throughput due to AMGS use is I/0 intensive applications.
The HLL was designed without 1I/0 capability because
microcode implementations do not increase the throughput
for 1I/0 intensive applications. However there are several
applications for which the AMGS should theoretically
provide increased throughput.

The applications tested in this study are grouped into
four basic areas. These areas are:

1) Integer mathematics
2) Floating point mathematics
3) Sorting and Searching (Comparisons)

4) Bit manipulations

......

...................

There are several subcategories in the four basic areas. A

discussion of the subcategories follows.

Mathematically intensive applications that do *
calculations within the limits of the AMGS are prin.
candidates for the systes. There are several different
types of msathematical calculations that should be
considerad. Integer arithmetic must be considered
separately from floating point arithmetic due to the
different amethods used for doing the calculations. Integer
addition/subtraction is handled internally by the AMGS, but
the floating point accelerator (FPA) on the VAX computer is
used for floating point calculations and integer
multiplications. This call by the AMGS to the FPA results
in a significant amcunt of overhead for each call. ¥When a
Fortran program calls the FPA there is also some overhead,
but since Fortran translates to sachine code and machine
code calls to the FPA involve less overhead than AMGS
calls, the net result is slower execution time for the AMGS
code than for Fortran code during floating point
operations. This extra overhead in the AMGS is due to a
requirement to save the state of the microprogram prior to
executing the floating point operation. The result is a

net loss of throughput when doing floating point

calculations or integer multiplication on the AMGS.
Several types of calculations are possible when doing

integer and floating point calculations. Division,

40

----- .-

—pv,w - o b m e e v e
A 5 AL 0,50 4, G CS LR G ALAN SR

R e SLE I LI RN P S (e P, S, AR, W, el S, AL Al S IS S T S Rl AW PN VR, SO, SN o A i e e I el T T T

multiplication, addition, and subtraction are different
arithmetic operations and the increase in throughput may be
different for each ¢type of calculation. As wmuch as
possible, this project will categorize the different
calculations and show the percentage of increase possible
for each category, however, in the interest of reducing the
- total number of tests we will combine tests that are very
similar. Since addition and subtraction take the same
amount of time in msicroprograsmed processors, they will be
tested together. Multiplication and division are not
; implemented similarly and will not be tested together. In
fact, since division can 'usually be implemented as
reciprocal multiplication, division will not be tested.
Integer exponentiation is normally accomplished by a series
of multiplications and therefore will be considered a part

of the multiplication test.

s %"

Another major application of the AMGBS is sorting and
searching. Since sorting and searching both include
comparisons of bit patterns, they may be considered
together in one broad category. The major difference is
that sorting usually includes moving of data or moving the
pointers to the data, while searching simply involves
comparing until the desired data is found.

One final category that is directly applicable to the
- NRL problem is bit manipulation. This category includes

. the comparing, shifting, and replacement of bits or fields

ﬁ 41

- -

of bits within a word. This category may be an excellent
application of the AMGS due to the bit asanipulating
commands that are built into the JRS HLL such as the shift,
swap, and mask functions. Fortran has the ability to do
- the bit manipulations, but the functions are provided
through 1library calls which tend to be slower than direct
language implementation constructs.

> The next section of this chapter is an explanation of
each test and the basic area it is designed to test. The
E explanation of the results of each test is included in
Chapter Five. Table 3-1 lists the four basic areas and the

tests that cover each ir.a.

Table 3-1: Specific Tests

- Integer Math Eloating Point Math
- 1. Do Loop 1. Chebyshev Cosine
- 2. While Loop 2. Fast Fourier Transform

3. Summation
4. Factorial

Sortina/Searching Bit Manipulations
: 1. Bubble Sort 1. Bit Manipulation
2. Sieve of Eratosthenes 2. Bit Reversal

3. Quicker Sort

4. Binary Search

The simplest test was designed using the loop
structures. The WHILE 1loop and the DO loop provide a
method for testing addition or multiplication and comparing

the results directly with the Fortran equivalent. The

42

simplest test is a WHILE loop that only increments the
loop counter. This test can be done as many times as the
user desires and it also can be nested to any desired level
to test the effect of nesting. The basic area being
checked in this test is the addition and comparison
required each time a loop is completed. This comparison is
required to determine the test condition for exiting the
loop. A DO loop is another version of the loop construct,
with the increment being automatic and the condition test a
part of the DO statement. By using these two tests it is
possible to document how much time is required to execute
the overhead steps in any loop. This overhead cost will be

used to analyze programs with loops.

The next two tests use the basic loop structure to
determine the summation of an integer or the factorial of
an integer. Each of these tests can then be used with the
results from the previous test to determine the amount of
time required to do either an integer multiplication or an
integer addition by simply subtracting out the 1loop
overhead.

Floating point multiplication is the subject of the
: next test. By implementing a Chebyshev approximation for
the cosine of an angle and calculating many values, it is

possible to determine the amount of ¢time spent doing

floating point wmultiplication for each system. There are

some floating point additions that will add overhead to the ‘

43

'''''''''''''''''''''''

y
.

.

]

v .
..
o
s e
e
«f.
28

.........

T iy 0 1 B A W g~ Vil Whe e 0 AT G S A P PN A A i N i A A A e A e

test, but the effect of the additions should be minimal.
This test particularly reveals the overhead of calling the
floating point accelerator from the AMES. JRS
docusentation states that since both Fortran and the AMGS
use the same FPA, there should be no speed gained by use of
the AMGS. If the overhead of calling the FPA from the
microcode is too high, then it will make the AMGS slower
than the Fortran. This is an important experisent since
the results will be a prime factor in determining if the
AMBS should be used for floating point applications.

There were three tests written to evaluate the ability
of the system to do comparisons. The first is a sort
algorithm called GQuickersort written by R. S. Scowen. This
algorithm works by continually splitting the array of
values to be sorted into parts and sorting the parts using
the same method. The second algorithm is a method to
determine all of the prime numbers between two values.
This problem, called the Sieve of Eratosthenes, uses
additions, comparisons, and assignment statements to
determine the prime numbers in a specified range. This
algorithm will give an insight into how all three of these
items interact to affect the throughput of the AMGS. The
third test is a bubble sort that sorts an array of integers
into ascending order. By using a loop construct,
comparisons, and a simple assignment statement, this

algorithm is an excellent example of a well structured

44

modul @ that does comparisons and uses assignment

statements.

Another test algorithm is a Fast Fourier Transform
(FFT) written in two parts because the entire program would
not fit into the WCS. One part is a bit reversal program
that simply assigns elements of an array to different
locations in the array. The other part is the complex
multiplication plus a Chebyshev cosine and sine generation
routine for use in the FFT. The bit reversal is an
excellent comparison of assignment statements between the
two methods and therefore goes in the bit manipulation
category. The FFT complex multiplication is another
floating point multiplication and addition algorithm. By
using the results of these two algorithms, we gain an
example of a long algorithm that uses the entire WCS (the
FFT) plus an algorithm that is only concerned with moving
values around in memory (the bit reversal).

The final test is an algorithm to do bit manipulations
using the bit manipulating functions provided by both the
JRS HLL and the Fortran library. The algorithm takes an
array of integers and performs different operations on the
integers such as AND, OR, EXCLUSIVE OR, etc. These
operations were chosen directly from the example NRL source
code, so this test specifically tests the NRL application.

With the test programs now fully defined, the next step

is to describe the test runs and the timing mechanism used

45

AN AT AT e T a Va¥aTaTu"od" s "-"i".'.“‘

to perfora the tests. The interdependence of tests will be
discussed in the next chapter as well as the effect of
using different language features on the individual tests. -
After discussing these effects the test results can be

presented and analyzed.

Ve

a8 s 0 8

s 8 4. A8

S o Ao A, Sl T S A S e S A R I A e oo e Y N N XTI T Ty

IV. TESTING

The testing of the programs was done with the most
accurate tool available so that any error in the timing
mechanism would be minimized. That is why the timing
mechanisa and its accuracy were so important to the results
of this study. Once the accuracy of the timing mechanism
was determined, the minimum length of the test was
specified to make the test 1length much longer than the
possible error. Besides the testing mechanism, there are
other aspects of program design that affect the execution
time of the resulting object code. Since this is primarily
a comparison between Fortran and the AMGS, both the factors
affecting the execution time of compiled Fortran code and
the factors affecting the AMGS were identified and
considered during the programming phase of the project.
The desire was to make the tests as equitable as possible

in the two different languages.

A. TIMING MECHANISM

The VMS system library provides a software mechanism
for timing blocks of code. There are no hardware monitors
available to time individual programs and hand timing is
very inaccurate in a virtual memory system. The only

method that is relatively accurate, easy to use, and can

47

. AN
» . .~ Y

» l- -.
«

Ce e '..;v&. RSN Ry 'p‘.\if-‘f“‘ * - e \. \-"
ARG AN e 3 A R R A S A A AR A AL R NN

account for the virtual memory wmechanism is the system

library timing function. There are two ways to use this
library function and both methods display precision to the
nearest one-hundredth of a second. The system manual
claims that actually calling the system library timing
function is more accurate than using the SECNDS Fortran
language feature (which uses the system library function).
(Ref. 11, p. C-30] Even though the claim of better
accuracy is not substantiated by any specific numbers in
the manual, the system library <function was chosen for
these tests.

There is a certain amount of overhead as a result of
each library call and since this overhead cannot be
accurately measured, it results in inaccuracy which must be
minimized. To time a segment of code requires two calls to
the library routine with the code to be timed sandwiched
between the two calls. The first call starts the timing
and the second call records the time. To minimize the
impact of the overhead in each use of a library function,
the minimum time for the code segment execution must be
much longer than the overhead. For this study, we
determined by actually testing a series of timing calls
that the upper limit of the overhead for each library call
was less than .005 seconds. Therefore, we designed the
Fortran version (without common or subroutine) of each test

to last a wminimum of two seconds. This means that the

48

ARt S WPt A, syt S S BT S W A Y PN AT N A M T A A SIS AT A= Sl e SRt Tadh St i g AR W Nt S an® Aalk ondk o

overhead for the two library calls in that version is less
than one-half of one percent of the test length. All tests
lasted longer than one second except for one test (the
binary search microcode compacted version) and therefore
the possible error due to the timer is less than one
percent except in the one test that is shorter than one
second.

Because some of the algorithms being tested can be
accomplished very quickly (in less than 0.5 seconds) it is
important to increase the execution time. This was done by
repeating the algorithm several times .o insure that enough

time was spent in the algorithm to produce accurate

raie 2o 4

results. To accomplish this, the input data can not be
changed during the program iteration and all iterative
E counters must be reinitialized on each iteration. These

Y extra instructions do add overhead to the test but the

overhead is the same in each version of the test and
therefore the impact was considered to be minimal.

When the timing mechanism is invoked it produces any of
five different values that are useful in analyzing the
amount of time spint in an algorithm. The first value
available is the elapsed time spent in the system, whether
executing or waiting. The second value is the total CPU
time that the algorithm being timed was executing. This is
the most important value since it displays the actual CPU

time the program required to execute. Next is the number

49

............
-

e, et e
T R S I SN

BN

h

HIR AR S AR LN

of buffered 1/0 requests and the number of direct 1/0
requasts. These numbers are not important in this study
since no 1/0 is being done during the timing periods. The
last available value is the total number of page faults
occurring during the timed period. This number is valuable
because it states how many times the job was interrupted
and waited for a new page of memory to be fetched. The
larger this value, the greater the chance for error because
the clock must be stopped and started for each page fault.

The fewer page faults and the closer the elapsed time is to
the CPU time, then the less chance of inaccuracies due to

timing errors.

B. LANGUAGE FEATURES AND THE EFFECT ON TIMING

Before 1looking at the effects of the language features
it is important to note that if a programmer does ’dumb’
things, almost any algorithm can be programmed
inefficiently in any language. It is a basic assumption
during these tests that the algorithms are not being
programmed poorly and every effort is made to use good,
solid aléorithms. Also, since the same algorithm is being
programmed in both languages, any bad programming practices
will be present in both versions and therefore tend to
cancel each other out.

The next consideration is the effect of language

features on execution speed. In the JRS HLL, there are no

S0

features that will affect execution time except for the

call to the FPA when doing floating point arithmetic.
Floating point arithmetic requires a separate algorithm
because of the data representation required. The data must
be represented in one word and that one word includes both
a mantissa and an exponent. The algorithm must separate
the mantissa and the exponent, perform the operation after
aligning the decimal point, and then store the mantissa and
exponent back into the single word of memory. Floating
point arithmetic is common in all block structured
arithmetic languages and therefore Fortran has the same
problem, but not to the same extent as the JRS HLL.

The Fortran 1language is not as simple as the JRS HLL
and therefore some of the Fortran language features affect
the execution speed of the program. Fortran has several
different data access and parameter passing modes that do
affect the execution time of a program. It is important to
design tests that show the effects of different uses of
these features on the execution time of the same algorithm.
Otherwise, the results of the tests will only be valid for
the language features being used in that specific test and
could not be generalized for any program in the testing
cateqgory.

Some of the 1language features of Fortran that affect
the execution time are common blocks, subroutines with

common blocks, and subroutines with parameters. Common

S1

At Jum

blocks affect the execution time of a program because the

blocks are placed in a specific location in memory which
results in more indexing and slower data access for each
iteam. I¥f instead of using a common block the data is
simply declared in memory, there will be a shorter access
time for each data item and faster execution.

The use of subroutines adds overhead due to the linkage
conventions and activation record initialization that is
required. Each time a subroutine is called, the current
state (registers and program counter) must be saved in an
activation record to insure that the state can be
reinitialized when the subroutine is exited. When common
blocks are combined with the use of subroutines there is
both the overhead of the subroutine call and the overhead
of accessing the data items in the common data area. These
two added types of overhead result in increased execution
time when compared with code that does not use the
features, On the other hand, the features provide methods
of passing data that are not otherwise available.
Therefore the user must tradeoff modularity in design and
ease of passing data between subroutines for longer
execution times.

The use of subroutines with parameter passing results
in even more overhead because of the requirement to set up
the data area for the parameters, passing the parameter

upon subroutine call, and returning the new values of *“he

52

t Sy RS INACRIEMICRNIL A BVl A tC A Sl iec It S o gk e B s el undl e L b Al T T i At ‘Z‘l‘l"

parameters upon subroutine termination. Again, this
language feature adds to the convenience and modularity of
the program, yet results in longer execution timas.

It should be noted though that without common blocks or
parameter passing there is no way to pass data between
subroutines. Alsa, if a data area is large, parameter
passing may be very costly, even to the point of being
unusable. Another possibility is writing the program
without using subroutines or data passing mechanisms.
However this usually results in programs that are difficult
and expensive to read and maintain. S8ince this is
unacceptable for most software projects, most programs are
written using some, if not all of these features.

In order to document this tradeoff, all programs were
tested in each of the following categories.

1) Fortran without use of a common block or subroutine.

2) Fortran using a common block but no subroutine.

3) Fortran using a common block and a subroutine.

4) JRS HLL using a common block and a subroutine.
By testing each program using each of these methods, we can
identify the amount of time added by the use of each
language feature. The user can then weigh the use of the
JRS HLL depending upon what features are desired. The most
realistic comparison is between a Fortran program using
subrautines with common blocks and the JRS HLL because the

JRS HLL requires the use of both a subroutine call and a

53

L
p
3
¥
!
p
e
b
b

PPy

common block. Besides, most large Fortran programs are
written using subroutines and common blocks so that the
resulting program is amodularized yet allows for easy data
aACCESS.

One other requirement was determined during the testing
dus to the VMS operating system being a virtual memory
system. When preliminary tests were made it was determined
that other users seemed to have an effect on the execution
time of the tests. Therefore, the tests were made under
two different conditions. One condition was with the
system clear of any other users. The other condition was
with other users on the system. This was done to be able
to document the difference, if any difference existed, and
clear up the question about the effect of other users on
the timing of a programs. Chapter Five has a further
explanation of the timing mechanism accuracy analysis.

The main emphasis during the writing of the tests was
on making the programs equivalent. All versions of each
algorithm must do each step the same way so that the
comparison is fair yet the tests must be programmed as a
'normal’® programmer would do it in that language. If a
program is written in a special way that is known to be
optimal for one of the languages then the comparison of
execution times would favor that language. However, if it
is natural to use the feature in that language then that

was the way it was done. One example of this policy is in

54

i e 4

ARG A0 TN Y g R N g ot AEEC MR S T A S

testing the cosine <function. S8ince the VAX 11/780 VMS
operating system provides a cosine library function, the
library cosine function was compared to the Chebyshev
approximation to see which wmethod is faster. Thus both
methods (Chebyshev and the system library function) will
achieve approximately the same answer, however the
algorithm used to achieve the answer will be different.
This special case is done to measure the effect of not
having a trigonometric function procedure available in the
3 JRS HLL library. Included in this test is the resulting
) inaccuracy of the Chebyshev approximation, the space used
to store the routine in the WCS, and the execution speed.
With the specification of the testing methods, testing
categories, and timing mechanisms, the next step is to
compare the results. A comparison of execution times of
each program in each category of testing was accomplished.
During the explanation of the comparison, an analysis of
the data and a summary of the results is given. This
analysis will allow us to specify which applications the

AMGS improves and which applications the AMGS does not

improve.

...... ..-.‘_... K .;.. *‘-“- _:.-‘-'_:\«.- ‘-'.‘ -
f!.";‘:!.‘fL'L*L‘A [*\rl._

R e SR O . o I Y R
N AN N A RO TS SN
L OW

N . O s
it CS R IROACA S VU SV VI . P IR IS I

V. PERFORMANCE COMPARISON

The results of the tests can now be analyzed and
compared since the factors affecting microprogramming and
the processes involved in testing have been reviewed. To
insure that the analysis is complete, the raw data is
presented first followed by an analysis of the results.
The analysis will first compare the effects of language
features on each of the tests and then compare the results
of the different types of tests (ie. while loop, do loop,
etc.). The final section of this chapter discusses the

validity of the tests and analyzes the error in the tests.

A. RAW DATA ANALYSIS

The raw data is given in Table 3-1. All tests were
programmed in the four categories explained in Chapter Four
but only five of the algorithas were hand compacted. The
times shown in Table 5-1 are the mean values of ten tests
of each algorithm without other users using the VAX 11/780.
The number in parenthesis in the table, if shown, is the
value that should be added or subtracted from the mean
value to define the 994 certainty range for the mean value.
If no number is shown in parenthesis, then the value is one
hundredth of a second. An explanation of how the range was

determinaed is given in the last section of this chapter.

S6

T e e S e A
ALY IR A A AT AR R AT AT TN

b
:
L
%
“-
"..
»
r
LE

— -
P s

-
s

Tl iateie —pe e
-,
,

| CARA SHIAC A ACAE I e A M AL AL S PR SR g & L S, S S N R i S R A R i i Ml i Bt Bh B A A |

Table 35-1:

NO COMMON
STRAIGHT

LS] RO

While Loop 11.11
Do Loop 7.07
Factorial 4.61
Summation 4.49
Cosine 3.09

Cosine(Lib) 8.72
FFT 11.16(.02)
Sieve 3.39
Binary Search 2.50
Bubble Sort 3.39(.03)
Quicker Sort 8.78(.04)
Bit Reversal 4.75(.02)
Bit Manip 8.40(.04)
Not all programs
compaction required
microprogramming and
time. The tests to be
a representative sa
categories. Another
compaction was to ch

Fortran and some tes

compare the effect of

Test Results (in seconds)

COMMON COMMON HLL HAND
STRAIGHT SUBROUTINE JRS OPTIMIZED

LIS 1 IR

18.18 20.20 11.12
10.10 12.12 10.12
7.46(.02) 7.%4 8.88 8. 63
9.77(.02) 9.77(.01) 5.70 2.87
6.17 6.24 8.62
9.43(.14) ——— S

13.08(.02) 13.74(.03)17.37(.02)

4.18 4.10(.02) 2.49

3.54 3.43 1.17 0.79
4.58(.03) 4.79(.03) 3.77(.02) 2.29
.75 ?.80(.02) 4.75 4.36
. 7.49 7.50 2.25

8.53(.07) 8.41(.02) 2.98

ware hand compacted because the
special knowl edge of VAX
also required a significant amount of
compacted were chosen to insure that
mple was taken from each of the
criterion for choosing the tests for
ocose some tests which were faster in

ts that were faster in microcode to

compaction. The basic purpose was to

=7

see®, in general, how wmuch better we could do with the

compaction without exerting a tresmendous amount of effort.
That purpose was attained by compacting the five selected
programs. |

When looking at the times from Table 5-1 in general,
some of the results were counter-intuitive because the
expeacted result is to have the microcoded version execute
faster. In many cases the Fortran versions were faster or
as fast as the microcoded versions. This can be attributed
to three facts mentioned in earlier chapters. First, the
microcode that is generated +From the HLL by this AMGS is
not compacted. Second, the Fortran compiler generates
highly optimized code. The third reason is that some of
the routines used as tests involve floating point
arithmetic or integer multiplication, both of which use‘the
floating point accelerator. The use of the floating point
accelerator results in increased overhead for microcode.
These three factors, separately or combined, resulted in

some cases where the Fortran outperformed the microcode.

B. EFFECTS OF LANGUAGE FEATURES ON THE TESTS

The different Fortran language features were tested to
isolate the effects o# the different techniques for data
passing. The important point is that the tests were
programmed as a normal’ programmer would program them. No

special attempts were made to make specific tests run well

in either of the two languages. Since it was unlikely that
a determination could be wmade as to what the "normal”
prograsmer would do, the three different Fortran tests were
devised so that the user could determine which method was
needed for his/her application. 0Of course, if a programmer
chose the Fortran without sﬁbroutinos or common data areas,
then he/she was giving up the use of soae very inportint
software engineering techniques.

In general, the tests of the different Fortran language
features resulted in more speed with fewer features and
lass speed with more features. The fastest Fortran
technique in all cases was the version that used no
subroutines and no common data structure. The use of
common data areas with and without subroutines resulted in
somewhat unexpected data. The expected results were for
the versions using common data without subroutines to run
faster than the version using common data areas with

subroutines. This occurred in most but not all of the

tests. In general, there was only a slight increase in |
execution time when a subroutine with common was compared
with the same program with no subroutines but with common
data, which implies that the overhead of calling and
returning from a subroutine (without any parameters) is not
very significant. In fact, in most cases there was no
statistical difference (discussed in the last section of

this chapter) between the tests with subroutines and common

59

T T e e e T e e e e A e A T e e e e T4 T RO AN ORI A
B R O T N I PR R o € £ g g A A SRS P Ay A » .

F DA T P Y - T te T T L B P o1 SR SN B ST AT B TNV SO S AN A AR N R AN S T B P e S A N DT Sl Rt Rt S, |

and the tests without subroutines but with comson. One
possible explanation is that the variation in the length of
time to start and stop the timing mechanism is greater than -
the length of tise required to call and return from a
subroutine. Sincn‘ there is only a single call in sach
test, the results may not show any difference when the
subroutine is used. |

The hand compaction of the JRS HLL msicrocode always
resulted in faster execution than the uncompacted JRS HLL
microcode. This is as expected since the hand compacted

code was derived from the JRS HLL microcode. In no case

were instructions expanded ("n" microinstructions encoded
into "n+k" microinstructions, where k > 0) and therefore no
- increase in execution speed for the hand compacted code was
i expected. It should be realized that the method used for

ﬂ generating the hand compacted amicrocode does not really

produce hand compacted microcode because the compaction was
done to an existing program. The microprogrammer did not
set up the problem according to his .oun liking. The
microprogrammer simply toock the generated microcode and
compacted it using his knowl edge of the VAX
. microprogramming. If wicrooperations could be combined
with other microoperations to reduce the total number of
microinstructions, they were combined. The important point
to remember is that the microcode was machine generated and

hand compacted.

e S A T S S T s S S L Y N N T —me, T

Another point that must be wmentioned about the data
analysis in general is the overhead involved in the JRS HLL
microcode. The length of time required to make the call to
the wmicrocode plus the overhead involved in the use of
common data is not documented anywhere and can not be
determined in this study because the timing mechanism is
not accurate enocugh. Therefore during the analysis of the
data, it is important to remember that when the JRS HLL
microcode is called there is a certain amount of overhead
in the call. This overhead is most likely more than the
overhead of a subroutine call in Fortran because the state
of the micromachine wmust be initialized. The other point
is that all data in the microcode is in a common data area
and therefore, as has been documented, requires extra time
to access. Probably the b;st comparison between Fortran
and JRS HLL is to use Fortran with common data and
subroutines because the overhead of the common data and the
subroutine calls approximately cancel out each other.
Therefore, it is possible to compare the actual speed of
each method rather than comparing the overhead involved in
each method.

The overhead involved in the subroutine call and the
common data area will not always be constant.. If there are
only a few data items being accessed in the subroutine then
all of the data values can be placed in registers which

reduces the access time. However, if an array or a large

61

PR

- p—

number of variables are being accessed then it will take

b B

longer to get the data in and ocut because of the use of a
common data area. The important point when loocking at the

comparisons being made in the next few sections is that if

- ¥, v, v
RS AR AR AEA

common data structures and subroutines are used in Fortran
(which is almost always done) then the execution speed will
not be as fast as the fastest Fortran test. If the
decision is made to not use the common data structures and
subroutines then the programmer will be giving up
madularity of design and other software engineering

techniques for faster execution.

C. COMPARISON OF TEST RESULTS

This section will compare the results of the Fortran
versions with the HLL versions. The comparison will be
done within the four basic areas defined in Chapter Three.
Each test algorithm is available in an appendix in both the
Fortran implementation and the JRS HLL implementation. The
Fortran version of the algorithms available in the
appendices is the version in a subroutine with a common
data structure. The algorithms have been placed in the
appendices according to the basic area that they are
testing. Table %5-2 lists which appendices contain which
individual tests. The algorithms hav‘ been removed from the
individual test harnesses, however an example harness

(Factorial Program) is available in Appendix E.

62

e e e e
el Py AR NN LY K L R « " .
TR SN G T R A B SO PRI S AT W I IP o T SIS P T W

PO e ¥ e Vab oY LT T e Bam Wi Taa e Taa AT T NS NeeltTe e e LSO AN S S Rl Sad Sab tnd tnd fad b S A SNl |

Table 3-2: Table of Tests in Appendices

Appendix A: Integer Mathematics

1. Do Loop
2. While Loop

3. Summation
4. Factorial
Appendix B: Floating Point Mathematics

1. Fast Fourier Transforas
2. Chebyshev Cosine

Appendix C: Sorting/Searching
1. Binary Search
2. Quicker Sort
3. Sieve of Eratosthenes
4. Bubble Sort
Appendix D: Bit Manipulations
1. Bit Manipulation
2. Bit Reversal
1. Inteqer Mathematics
The basic loops were included in the integer
mathematics category because all that occurs in the loop
construct is an increment and test until the condition is
met, at which time a jump out of the loop is executed.
This is very simple and uncomplicated so the expectation

was that the microcoded version would not be much better

than the Fortran version. In fact, the JRS HLL WHILE loop

worw

was only as fast as the fastest Fortran version while the
fastest Fortran DO loop was much better than the JRS HLL DO
loop. The results imply that the Fortran code is highly
optimized.

63

Segonmna . ot e ans i e an
»

Since each of the 1loop tests involves only one
variable, the common data area access time penalty can not
be blamed since the variable was stored in a register.
There is the overhead of calling the subroutine and setting
up the data registers however that alone should not cause
the wamicrocode to be as slow or slower than Fortran. The
only logical answer is that the optimization and compaction
of the different codes has a large effect on the execution
speed. One other important point about the loops is that
in all cases the DO loop is faster than the WHILE loop.
This is most likely due to better optimization because the
looping variable is part of the loop construct while in the
WHILE construct the incrementing of the variable occurs
independently from the language construct.

The next test was the summation of an integer
value. This test measured how fast addition could be done,
however, since each summation could be done very quickly, a
loop construct. was set up to repeat the summation 10,000
times. The results were that the fastest Fortran version
was slightly faster than the JRS HLL version, even after
subtracting the overhead of the WHILE loop. This result
was not expected but can be explained as the result of lack
of code compaction because when the summation microcode was
compacted by hand, the execution speed became significantly

faster than the fastest Fortran version.

Lt .r.VY'*Y"‘ A

SRR NP a0 Y . R A6 LA M R A A S £ D ACR. R S ADN IR LRI AR AN AN IO RREL AN RSt aoit A T T TR

The final integer mathematics test is the factorial
program. The test was limited to a maximum input of 12
because 13! is beyond the limits of the storage capacity of
a four byte integer. Therefore, to make the test last long
enough for timing purposes, a loop was set up to calculate
the factorial 100,000 times prior to stopping.

The result of the factorial test validates the JRS
claim that integer multiplication is slow because of the
use of the FPA. After subtracting the overhead of the
loop, the JRS HLL is still twice as slow as the fastest
Fortran version. In fact, the slowest Fortran version,
using common data areas and a subroutine, is faster than
the JRS HLL microcode. Therefore, the AMGS should not be
used for integer multiplication intensive algorithms
because of the FPA overhead.

The JRS HLL did not result in any performance
improvements for any of the integer arithmetic tests
accomplished in this study. This was due either to a lack
of microcode compaction or to the use of the FPA for
integer multiplication.

2. Flgoating Point Mathematics

There were two algorithms for testing the floating
point mathematics applications, the Chebyshev Cosine
routine and the Fast Fourier Transform (FFT). Both
algorithms substantiated the JRS claim that floating point

calculations would not do well in microcode. The execution

635

speed of the FFT HLL version was about twice as long as the

fastest Fortran version. The other Fortran versions were
of course slower than the fast version due to the use of
common and a subroutine call.

The Chebyshev Cosine routine gave the same type of
results as were attained for the FFT, a slow down of about
80%4, caused by the FPA. However, the interesting part of
this test is in comparing the speeds of the Chebyshev
Cosine with the speed of the Cosine Library function. The
overhead of the Library Function call is very high because
even the JRS HLL (which is the slowest Chebyshev version)
is faster than the Library Function test. Therefore it is
justifiable to say that while the use of the HLL for doing
trigonometric computations is not a great improvement, this
test does demonstrate that the commonly used featﬁres of a
language can be costly and that the microcode does give
slightly better performance than the Library Function.

Both tests in this basic area support the JRS claim
that floating point arithmetic will not be helped when
coded in JRS microcode. Since that point has been well
documented, we will now look at the sorting and searching
tests to see what kind of results they praoduce.

- 3. Sorting and Searching

There were four tests accomplished in this area and

three of the four gave results that were favorable for the

JRS HLL. The one test where the JRS HLL ended up being

bb6

slightly slower was the bubble sort algorithm. There was

no looping mechanism to subtract away from the problem and.
the algorithm consists of only assignment statements and
comparisons. Therefore there is no reason to explain the
slow performance except for the lack of compaction of the
microcode.

The Sieve of Eratosthenes program test resulted in
the JRS HLL version running about 25Z quicker than the
fastest Fortran version. This result was expected since
the microcode is able to do comparisons rather quickly.
One other interesting point became apparent during this
test. Since the tests are supposed to be written as a
*normal’ programmer would write them, it is sometimes
easier to use a DO loop rather than a WHILE loop or vice
versa. However, when trying to get code to execute
quickly, it is obvious that the Fortran DO loop is much
faster than the Fortran WHILE loop as shown in Table S5-1.
On the other hand, the JRS HLL DO loop is not nearly as
fast as the Fortran DO loop and only slightly faster than
the JRS HLL WHILE loop. Therefore, a praogram is dependent
upon the 1language construct chosen by the individual
proérammer and if a DO loop is used in the Fortran version
while a WHILE 1loop 1is used in the JRS HLL version, there
will be a greater difference in results.

To avoid this discrepancy in results (after it was

noticed in ¢the initial results), the Sieve algorithm was

&7

rewritten in both languages using DO loops because a

definite iteration (the DO loop function) was what was

v vy v p————

o 2O INRL A 4
N P TR

N P
LA L AACINADE
YR A R R L .

"ot A

‘.a "- L)
. a®p? -' \ “}“ - '?;IL(:M _fJAILg:_. A..{

needed in the algorithm. The change in speed of the
algorithems due to the use of the DO loop was not
tremendous. However, this test does demonstrate the effect
of using different language constructs plus the use of
’normal’ praogramming techniques and constructs.

The GQuicker Sort algorithm demonstrated the speed
of the microcode as was expected. Since only comparisons,
additions, and subtractions with one multiply are used,
this algorithm is very fast. The Binary Search algorithm
results ended up with the JRS HLL being twice as fast as
the fastest Fortran version. Again, this was expected
because of the use of comparisons during most of the
algorithm. This algorithm produced the second best
performance increase by the JRS HLL microcode of all of the’
tests. This was probably due to the fact that the
algorithm has only one DO loop, one WHILE loop, and the
rest of the algorithm is made up of if-then constructs
which are simple comparisons.

The sorting and searching tests were a good
application of the JRS HLL microcode. For the most part,
the microcode resulted in faster execution speed than the
corresponding Fortran praogram, however, the increase was

naver much more than twice as fast.

68

..................

T T Y

4. Bit Manipulations
The last basic area of the tests is the bit

manipulation area. Two tests were accomplished in this
area and both gave positive results for the sicrocode
version. The bit reversal program ended up with a large
increase in execution speed. The program was simply used
to switch items in an array. No comparing was needed since
the program switched the items in the array according to a
convolution scheme. This test demonstrates the speed of
the assignment statement in the microcode.

The bit manipulation program also resulted in
faster aexecution for the JRS HLL than for the fastest
Fortran version. The main reason for this fast execution
is that the Fortran version uses system library routines
which are slow to call and execute. Therefore, it is
actually the slowness of the Fortran library routine rather
than the speed of the microcode that gives the increased
throughput. The important point is that the microcaode does
improve upon the execution speed of the corresponding
Fortran code and therefore the AMGS gives a performance
increase for these kinds of operations. It is also
important to note that this program was simply a series of
calls to the microcode or Fortran routines that perform the
functions. No other operations besides the driving DO loop
were needed in the algorithm and therefore it was a very

accurate test of the actual speed of the tested code.

69

R R W 1Y W 4 ¢
.

Ol e 1

O N M

QT Vo KHibT Y Wl e B 2 s A 200 U8 Bt 1 Mo\ S 1 N S DAL NS S MR e PP R 0 G e B fy -V Coou P g Prg >

D. TEST ERROR ANALYSIS

Because this testing was done on a virtual semory
system, there was a possibility of error due to the timing
mechanisa being switched on and off many times. The
intention of the tests were to give the user an accurate
estimate of how wmuch speed would B. gained by using the
AMBS. To insure that the estimate is as accurate as
possible, a :onputation‘ was made to determine the
confidence interval for the mean. Also, to determine if
the virtual semory system was affecting the results, a test
was performed that allows us to state, with a specified
amount of confidence, whether the virtual semory system
affects the results.

Since we made several runs of each test, we were able
to determine a mean execution tise for each test and a
standard deviation for each test. However it is important
to do a statistical analysis to determine how confident we
are of these results. The question of confidence was
answered by using the Student T distribution (because of
the small sample size) to find the interval within which
the mean will fall with the specified amount of confidence.
For these tests, a confidence of 99%Z was desired. The
follaowing formula was used to determine the range of the
mean execution time for 994 confidence. The value for °t’

is dependent on the level of confidence desired and was

70

.....

read from a Student T distribution chart. [Ref. 12: p. 488]

X is the amsean of the sample, ’S’ is the sample standard
deviation, and ’n’ is the total number in the population.
X-tt(8/7n) < u < X+¢&(SE/ M

To find the effect of the virtual memory system
required performing each test under two different
conditions. First, each teat was made with other users on
the systenm. This could be anywhere from one other user to
twenty users. Next, each test was performed with all other
users locked out of the system and the entire computer
running only the system support programs and the tests for
this project. Then a hypothesis, called the null
hypothesis (H1) was assumed. The null hypothesis was that
baoth samples came from the same population. To test the
null hypothesis we used the following formula, where X1 and
X2 are means, S1 and S2 are standard deviations, and nl and
n2 are sample sizes (in this test, 16).

t = (X1 - X2) /7 S@RT((S1/n1 + S2/n2))

If the calculated ’t’ (from above) >= t’ (from the
chart based on 99%Z certainty), then the null hypothesis can
be rejected. In other words, the samples do not come from
the same population which means that the number of users on
the system does affect the results. If the value ’t” < "t°
(from the chart) then they could be from' the same
population and the other users on the system may not affect

the results. [Ref. 12: pp. 214 - 2211

71

e

Eh AN It i e Ha i B A S " B A0 el I A U Jede S S S v Dhe i aa eal pl e g ae i sadl i S S i S N SN L SR SN A

The results of the first confidence test mentioned

above were enumerated in Table S-1 with data taken on the
VAX 11/780 with all other users locked out of the system. .
In general, the results were very accurate in that they
gave a small range in which the anticipated results would
fall. The null hypothesis test gave mixed results. It was
hoped that we would be able to state that the tests with
other users on the system would be from a different sample
set than the tests without other users. However, that was
not the case in general. In most situations, the tests
with other users on the system simply showed a higher mean
but the possible range for 994 certainty included most or
all of the range for the test without other users.
Therefore, in the second test the null hypothesis could not

be refuted in most cases. However, it does appear that

it et}

other users on the system do affect the timing mechanism

L MR

]

but only because they increase the standard deviation of

the tests and thereby widen the range of values for 99%

. & it}
a0, 4 & -

certainty.

n
)

MAARAL HAAOR

e
. o

72

------ DRI A L P A IO IP L R AL P
. N

R - -
Y, LR N

o s an g

L AN BT A . m e

VI. CONCLUSIONS

The purpose of this project was to evaluate the
performance of the JRS AMGS. This has been accomplished by
comparing the performance of the JRS HLL microcode with
Fortran code on the VAX 11/780. The testing has produced
some unexpected results and has shed light on several
interesting points. The Ffirst point being that microcode
will not always result in faster execution of an algorithm.
During the testing it became apparent that this was due
mainly to two causes. One reason is that for the speed of
microcode to be fully utilized, the microcode must be
properly compacted. The other is that the use of the FPA
by the microcode results in slightly degraded performance.

The second point is the effect of the different
language features upon the execution speed of the Fortran
code. When the fastest Fortran code was compared with the
microcode there were several cases where the Fortran was
much faster than the microcode. However, when the slowest
Faortran code was compared with the HLL microcode the
microcode was faster. This was true in all cases except
when the FPA was required. Testing the effects of the
language features revealed an important point since the use
of the features allows a programmer to use software

engineering techniques. When these features are not used

73

..............

N

it is very difficult for a programser to use software

engineering techniques such as modularity and information
hiding. Without these techniques the code say run fast but
it is wusually very difficult to develop and always hard to
saintain. Therefore, a tradeoff sust be made between the
convenience and security of the language features or the

speed advantage possible without the features.

A. CONCLUSIONS FROM THE DATA ANALYSIS

The analysis of the data allows for some conclusions to
be drawn about the use of the AMGS for specific
applications. The conclusiogs are grouped in terms of the
four general areas defined in Chapter Four rather than
about individual tests so that a user may make a decision
based upon a general category of application rather than a
specific example program. Specific program results will be
mentioned if the results of that test vary significantly
from the other tests in the specific area being discussed.

The integer mathematics application resulted in no
advantage from the use of the AMGS. This is most likely
due to the lack of compaction of the microcode. This
conclusion is justified because when the summation
program’s microcode was compacted and subsequently
executed, the results were a significant increase in
execution speed. Therefore, it is assumed that if the code

was properly compacted the execution speed would be

74

........

.......
...........

™ A N e BT T W LT OTHAT S Tl ek B LA U AT LTI

improved. The only test in the integer mathematics

category that would not be greatly improved by the
compaction is the factorial test. This is due to the use
of the FPA for integer multiplication.

Ll St g 4

! The <floating point mathesatics area also turned out not
to be a good application for the AMGS. This was expected
and the probability that this would happen is documented in

the JRS HLL sanual. The difference in the magnitude of the
execution speeds is interesting because the JRS HLL runs
about 460X slowaer than the fastest Fortran version.

The sorting and searching application area demonstrated
promising results for the AMBS. In three of the four tests
the AMGBS version was significantly faster than the fastest
Fortran version. In one test (the bubble sort), the
Fortran was faster than the AMGS but this is probably due

to a lack of compaction rather than due to a lack of

WEW ¢ ¥ ¥ 7 TR R NS ST . Y

applicability to the AMGS. From the results of these four
tests, it is justifiable to say that sorting and searching
are both good application areas for using the AMGS.

However, it should be noted that at this point in the AMGS

L TEEY Y Y Y Y Y VY

development, the difference in execution speeds is not as
good as it could be with compacted microcode.
The bit manipulation area also resulted in favorable

results for the AMGS. In fact, this was the best

et T T TET 6 ST T

applications area of the JRS HLL because both tests ended

up more than doubling the speed of the Fortran code. 0Of

TEEE ¢ o,

73

course, one of the tests was slow in the Fortran version

because of the use of library functions, however, since
that was the only way to easily perform that function in
Fartran, that was the way it was programmed.

Now that we have defined the areas where improvement is
possible the question remains about whether the AMGS should
be used by NRL? The answer to this must be based on more
factors than simply execution speed. We must also consider
system cost, ease of use, and actual improvement possible.

Since the improvement is at the best two to three times
better than the Fortran code, the cost in money and
praogramming effort can not be justified by the possible
gain. When the system is improved to include microcode
compaction with a resultant increase in performance, then
the AMGS cost may be justified. Somewhere in the area of
an order of magnitude increase in speed is necessary before
the cost of the system (money and programming effort) is
justified.

The AMGS did prove capable of producing microcode that
is as fast or slightly faster than the compiled Fortran
code. Therefore, if an application exists that will use a
microcodad machine, the AMGS is capable of producing a
large amount of ’acceptable’ microcode. The AMGS can
produce the microcode very quickly in comparison to
conventional methods. Also, the AMGS can produce large

amounts of microcode at much less expense than is possible

76

R AR okt aa s S

TSV AT A CEEYT TN Y Y V. SNy VY e v v T

T T e Y T LT, T T

RARES | RO L

with hand aicrocoding. The AMGS therefore provides a

sechanism for producing ’acceptable’ microcode efficiently
and inexpensively.

One other possible use of the AMGS is to produce
microcode that can be hand compacted. If the
microprogrammers are available, the HLL. can be used to
produce an uncompacted microprogram and then the
microprogrammers can be used to compact the HLL microcode.
This technique produced very good results during the study
and the cost in microprogrammer’s time is much less than

writing a complete microprogram from scratch.

B. FUTURE RESEARCH POSSIBILITIES

There are several areas that can be researched as a
continuation of this work. Some areas relate directly with
this type of microcode generating system but other areas
are points that became obvious during the study yet had to
be ignored to keep the scope of the thesis within reason.
One area of research is to evaluate the next version of the
JRS AMGS. The next version is now available and has
microcode compaction which should result in much better run
time results. Also, the revision has more 1language
constructs that more closely parallel the constructs
available in the more modern block structured languages.
With these revisions, it should make the system easier to

use and give better results.

77

S8ince one of the suggested advantages of the AMGS is
portability of the JRS HLL microcode, it is important for
this system to be implemented on another machine so that
the work involved in doing such a job can be documented.
The possibility of implementing thn AMGS on another machine
is already a stated goal, but until it is done, a proper
testing of both implementations can not be made. The
comparison of the results of the tests would document the
portability of the system and demonstrate the ease with
which the machine transition could be made. It would alsao
be advantageous to have another language such as Fortran or
Pascal used as the source code instead of the JRS HLL.
This would make the AMGS accessible to more people
resulting in a better chance of the system becoming more
widely used.

The cost of using different language features in
Fortran was interesting even though it was a sidelight of
the study. Further study could be done as to the exact
cost of using a subroutine with or without parameters.
Also, the actual cost of using a common data area could be
documented so that a user knows how much the use of such a
feature is costing. Of course this kind of testing would
be system dependent, but if that system used these language
constructs for a significant amount of work, the results
could be very helpful in making decisions during future

programming efforts.

78

The final suggestion for further research has to do

with defining the application areas. It would be very
helpful if there were some guidelines as to what
applications use what operations. These guidelines would
be very helpful during future system performance evaluation

efforts.

79

aris ae an v & B 2aarag

L e et e s e am an e ma o o am aB SR AN ek

3.

4.

LIST OF REFERENCES

Sheraga, R. J. and Geiser, J. L., "Experiments in
Automatic Microcode Generation", JEEE Transactions
gn Compyters, June 1983, pp. 3957 - 3569.

Wilkes, M. V., "The Best Way to Design an Automatic
Calculating Machine"”, v

Advances in
Microprogramming, Artech House, 1983, pp. 58 - 6&0.

Rauscher, T. G. and Adams P. M., "Microprogramming:
Tutorial and Survey of Recent Developments", IEEE

Transactions on Computers, January 1980, pp. 2 -
19.

Booch, G., Sgoftware Engineering with ADA,
Benjamin/Cummings, 1983.

Davidson, S., "High Level Microprogramming — Current

Usage, Future Prospects", Micro 16, October
1983, pp. 193 - 200.

Geiser, J. L., "On Horizontally Microprogrammed
Microarchztecture Descrzptxun Techniques", 1EEE

s September
1982, pp. 513 - 52%5.

Gries, D., Compil nstruction f igita

Computers, Wiley, 1972.

Davidson, S., Landskov, D., Shriver, B. D., and
Mallett P. W., "Some Experiments in Local Microcode
Compaction for Horizontal Machines", IEEE

Iransactions on Computers, July 1981. PP. 460 -
477.

Fisher, J. A., "Trace Scheduling: A Technique for

Global Microcode Compaction", IEEE Transactions on
Computers, July 1981, pp. 478 - 490.

Isoda, S., Kobayashi, Y., and Ishida, T., "Global
Compaction of Horizontal Microprograms Based on the
Generalized Data Dependency Graph", lEEE

Iransactions on Computers, October 1983, pp. 922 -
933.

80

A

11- - N R 9
Digital Equipment Corporation, No. AA-DO34C-TE, April
1982- *

12. Miller, I. and Freund, J. E., Prgbability and

Statistics for Engineers, Prentice—Hall, 1972.

MOV O

APPENDIX A
INTEGER VATHEMATICS ALSORITHMS

THE DO LNOP IN A FIRTRAN SUBROUTINE
*I' IS THE LOOP VARTABLE WHILE °*x°*
IS THE TOITAL NUMBER OF TIMES THE LDOP
NnILL BE EXFCUTED,

SUBROUTTVE DOLOIP

CNMMON /ACS/ 1,4

D T=1,«

E~&DDC

E oD LR) S VIO N T 1

T__.y B AR A Y TR S5 e Y 7 S0 A IS S e Vi, ", SN Nl P O . Sl P A L S A T T TR ey

\ JHIS PY0OGRAM IS A D0 LOOP NRITTEN IN JRS HLL N

PROGRAM DNLOGP:
INTEGER I,K3

DO 1 =1 1O K3

EMDDO;
sSTQ0”;

E:D. N OF DGLOJP N\

a3

0 AL A ad 2l Y

e TR TN AT T A T e T A i R AR L 7 FOO i)l SR SPTENCIANAID i e - gl TIminoN el A - W - B S e ot e i DA it Shah Sufia. St Paga, il Yaby~Nau LIl

[

E)

PR

C THIS IS THE AHILE LOOP IM FORTRAN
C COUNT +HOLDS THE TOTAL J“UMBER OF TI1MVES
C THE LUJP WNILL 3E EXECUTED, ZERD HOLDS
C THE VALUE o, .
SHBROUTINE ALLELOUP
THNTEGER COUMT, ZERO
COMAQN /NCS/ COUNT, (ZERID
N AHTLE (COUNT GT., ZERD)
COuMT = COUIT =~]

EMD 0D

ExD L AF aILELIDP

.
".\
o

s

.
)kﬂfk‘\

\ THIS IS THE AATILE LOOP IN JRS HLL \
PROGRAM WHILELOOJP:
INTEGER COUNT, ZERO;
00 AHILE (COUNT GT, ZER0);
COJUNT = COHUNT = 13

A IH

R e P AR MIa R g, M keSS P e T P TR R TRl e T A TR e e TR AT LT VR R AR VI R Fa ML A L VLT LA OTLLNT T SRS AT YRR Y
» . . . e,
. - - .

Py

THIS TS THE SUV ALSORITHM IN FORTRAN

*COUNT® IS THE NJM3ER OF TIMES THE SUMMATION wILL

3F COMPUTED, °'VALJE' IS THE NUMBER TO BE SuU4MED,

*TEMP' IS A STORAGE LOCATION FOR °‘VALUE'., ‘'TOTAL' i
IS THF VALJE OF THE SUMMATION, 'ZERO' HOLDPS THE

VALUE 0,

OEICICICY) O)

SUBROITINE SUM

[MTEGER TOTAL, VALUE, TEMP, COUNT, ZERO
COvvVON /aCS/ TOTAL, VALU'E, TEMP, COUNT, ZERD

ZER) = 0
DO NHTLE (COUNT GT. ZER0)

REINTTTALTZE TAE VARTABLFES FOR THE SJv RNUTIME

«)

COUNT = CUJNT = |
VALUE = TEWP
TOVAL = ZER0

THIS 13 THE ACTUAL SiatinG QF THE VALUE

<)

D0 AHILE (VALUE ,GT. ZERN)
TOTAL = TOTAL + VvAL''E
VALUE = vALJE = |
Exd D0
gD ON

Ev § DF SuUM

46

3

SRR AR WA X SOt

\ SUMMATION ALGORITHM IN JRS HLL ©
PROGRAY SUMMATIIN;G
IMTEGER TOTAL, VALUE, TEMP, COUNT,

DO AMHILF (COUNT .GI, ZERQ)?

COUNT = COUNT = 1;
VALUE = TEVP;
TOTAL = 0;

20 wHILE (VALUE ,GT,. ZERN);

TOTAL = TIOIAL + VALUE?
VALIUE = VALUYE = 13
ENDDD;
Endo0;
s109;
EMD,
R7
A A S G S A R A A O N

ZERD;

DY

Gass

Pl A

-_P.:
P

R

00 9T o) St Nl ke g g grad, gig 20 iR AN By ra e I MO A D g gy VA vy s Jnd ol ool AT A Db ia Sk

OO0

THE FACTORIAL SU3ROUTINE IM FORTAN

'COUNMT* DETERMINES HOW MANY TIMES THE FACTORIAL
I 'VALUE®* AILL BE DETERMINED, 'TOTAL'® HOLDS
THE ANSWER AND IS INIFTALIZED TO 1, ‘'TEMP!
40LDS THE FACTORIAL VALUE TO BE MDETERMINED

FOR REUJSE.

SUBROUTINE FAC

INTEGER TOTraL, vALUE, TE4P, COUNMT, ZERO, ONE -
COMMON /ACSZ/ TOTAL, VALJE, TEMP, COUNT, (ERD, 0ONMNE

DV AHILE (COUNT .GV, ZERO)

SOUNT = COUNT « 1
VALUE = TEMP
TUTAL = JNE

YO wHILE (vALUE 6T, ZFRN)
JOTAL = T2ATAL » VALUE
VALIJE = VAL:IE =« |

Erid DO

guh 0O

EMD ' OF FAC

RrR

AR AR P P

\ THE FACTORIAL PRJIGRIAM IN JRS HLL \

PRUGRAM FACTORIAL;

INTEGER TOTVAL, VALUE, TEMP, CODUNT, ZERO,

DO AHILE (COuUNTY ,GT, ZERO):?
COINT
VALUE

TOTAL

COUNT =
TEWP;
17

1i

Yy wHILE (VALUE LGT, ZERD);
TOTAL = TJITAL » VALUJE?
VAL JE VALUE = 1;

EHDDN;

ENDDY;

ST0=33
£,

#Q

.......

AN NI U W MO AP R LR P &

[z

()OI O IR CILICNLOICOD

Y€

APPENDIX B

FLOATINS POINT YATHEMATICS ALGORITHMS

SUBRVUTINE FFT
ARARRAARARARARAARAARRRAARANE AR AARARAR AR LA AN ACARARARAS A AKX
FAST FOURUIER TRANSFORM
ARARRKARRANERKRARRERARECAAREAAARARRARARRRARARARRAANARARANARAR
X - COVPLEY ARRAY X (2x%W)
v - DRDER IF FFT, N=2x+4

RAZED UPON AN FFT FIRST NEVELDPED AY STGNALS
SCIENCE CHORPORIATION FNR PRNJECT SALFSCLFRK,

FIRST TRANSCRUAED AY LCOR € LAURVICA, USY
MODIFIED fay LT ™ HARTOMG, SN

REAL XKREAL (H096),X1MAG(I096), TREAL, I T¥AG, T2RERL,

l F21WAS, IREAL ,JIvAG
DATA PIL/3,14153926%/
NZ2AakW

MOSTAGE FOHRIER TRANSFORA

Ny 29 L=1,M
LEW=2ax(1+ =)
Let=LF0/2

UREAL = t,0
yrvan = o0
Prast = RI/ZFLIATCLEL)

£ECHPLX(CI3(PHA3F), =31 V(PHASE))

IF (PHASE 5T, (O1/2.9)) THF\
OHASS? = P < 24ASF

ZL3E
44382 = PHASE
SWNTF
THAX 2),99935798 (N, 19024045 «PHASER & b 1nxE Q)
TO3K = 08¢ ¢ (0,08992674 * DAASE? % PHASE?
1 PHASE?2 & PHASF?)

[F (PHASE G5T. (PT/2,0)) 149 « COSX = «CLSX

S OCALCHLATE 5T

.................

-y el

b

.........

Kk #a P L Wn W a Fn Wy TR TETE e i S e I L R P e Ao)

(3]

10

20
a9

IF (PHASE LT, (PI/2.0)) THEW
PHASE2 = 2[/2,0 = PHASE
ELSE
PHASEZ = PI = (3,0 * P1/2.,0 =PHASE)

0,9999579S5 «(0,49924045 xPHASEZ # PHASE?)
SINX +(0,03962674 * PHASE?2 « PHASEZ *
HASEZ2 % PHASE?Z)

W
—
4 o
»x
0" u

i
DECIMATION In TIWME
na 20 J=1,LE!L

vo 10 [=J,M,LEQ
[Pe]+LE!

TREAL
TTVAG

XREAL(T) + XREAL(IP)
XIMAS(T) + XIMAG([?)

122EAL = XREAL(L) = XREAL(TIP)
T21MaG = x[MAG(1l) = x[VAG(TP)

XREAL(TP)
X THAG(1P)

TRREAL & UREAL = T2[9AG « iJ[146
T2REAL * UTMAS ¢+ 2] a0 » UREAL

AREAL(T) = TREAL
XITWAG(L) = Tivag

CouTIvIE

JREAL = UREAL & CO3X = (JU[M8G & =57 .x)
JTVAG = (UREAL A =STNx) ¢ J11A5 & CU5X

CovliruE

RET Jiey
Fin

91

........
........
DYy

.....
T

PROGRAM FFT;

RARRARRNARARRRARARN RN ERARRARAAARARARRRARA AR ARARRARALN

FAST FOURIER TRANSFORM = AMGS HLL VERSION \
AAR R AR RN R AR AR AR R AR AR RANARR A AR A A AR R AR ARARRAARRAN

INTEGER T,J,M/N,L,LEO,LEL,IP,KOUNT,K,NV2,NM,NUL,P;
REAL UREAL,JIVAS,PHASE,COSX,S1uX, TREAL, TIMAG,

| T2REAL,T2IMAG; ’

REAL TMP,P1,R1,2,R3,K3;

REAL ARRAY XREAL(4096),XIVAG(4095);

DOES NOT Ou RIT W VERSAL

\ N = 2&xv \

N o= 13
D} <NUNT = 1 70O Mm;
Nz 2 & M3

[RTEH
\ M STAGE FOUIRTIER TRANSFARM \
\ ZXECUTE THS LOOP 10 TIVES FOR T 'Ivs PURPUSES \

D) < =t 70 19;
IR B i I
REPLACE LTA JTHLTE ExPASTIN NUE T Su EXPONENTS \

LENz=2+a(Mpl=l); \

= 1 T9 (Mel=L);
*

a b B S ok ol st Nt aae g

Jiwal, = D,02

b YUIEAL = 1

PaaASE= PT/FLIATOVEL):

\ NSCHPLC(COS(PAASFE)Y, =S TN (PHASE))N\
\ GELGERATFE 3T+ AD CN5 \

e Ll o

IF (PHASE LT, (PL/2,0)) THE™

NNy

a2

A e e e T B TR T A TR T P e A e e W W e e A L Y L TR TR R

-

Ve & .4 0,0

DR R

Y W I A

T 9P
ENDDO
FLSE
s H
Tuwp =

ENIDD;

°1

PAA

cosSx R1
! (R3 =

o
9

PHASE;

E:

(R2 + TVP % T%P) +

TUP % TYP & T4P x Tup);

LA M AR S

T YUY

IF (PHASS ,GT. (P1/2.0)) THEN
iy
CO3X = =ZUSK:
40095
\ CALCULATE SIN A\
1F (PHASE .LT. (P1/2,0)) THEV
aUF
T¥P = PI/2,0 = PHASE;
ENPDQ
FLSE
nn;
TVP 2 Pl « (3 x P[/2." = PHASZE);
SRR H
STAX = RI = (RS & Twp a Tap) +
1 (R3 &4 TMD & TYM2 » T4AP & T4P) ;
\ OFCT®ATTINY T TiaF \
D1 J=t T2 LEY;
Ny T2l 1Y 1oAY LE;
[P=T+ E1;
TRAAL = K3FALCL) + XREAL(IP);
TG = XJYaAGETY ¢ xI tasceiPryyg
2REAL 3 xkEAL(I) = XPEAL(IP);
TAEMAT = XIYAS(L) = XT9as(IP);
XREAL([?) = (12REAL + JREAL) =
| (T2T9A% « 11145 ;
XTA0GOIR) = (TRREAL x gT7iG) +
1 (12T4A5 & IREAL)Y;
XILAL(T) = IREAL;
XTAAG(T) = TIMAG;
93
e L e T e T e e e T e e e T s B e

N e

- BTTETTR

!.. i“ l.‘. <“‘
N et A

ENRDD;

YREAL
UIMAG

ENDDO;
ENDDO}

ENDOD;

SToP;
END,

e w TN

TN T T T TR T

M 2 an . 2 S Be

(MREAL » CNOSX) = (UIMAG » (=S1itXx));

(UREAL * (=SINX)) + (UIVAG

* COSX);

T

‘,- z e) 4 & 8

sSARIAN]

T [HIS IS THE FORTRAN CHEBYSHEV COSINE ROUTINE,
© THE CIOSINF OF ALL INTEGER ANGLES FROM 0 10
Z 180 DEGREES 1S COMPUTED, THE COSINE OF EACH
C ANGLE 1S COMPUTED *K*' TIVMES FOR TIVING
C PURPISES.
SJBRVUYTINE COSINE
INTEGER T,J,K,L,M,N
REAL PI,TEMP,R1,R2,R3,LIMIT,FANS
COMMON /MCS/ T, 1,K,L, M, N, P],TEM?,R1,R2,R3,
1 LIMIT,FANS(12180)
DN AHILF (J JLE. ®)
1 =0
0D «AILE (I LLE. 18"
1F ¢ JLE. 9N) THEN
TE#P = ((14*P[)/LY[T)
ELSE
TEMP = (((M=[)*2]) /LT 'T)
EIDIF
FAM3(T) = RI=(R2ATEUI4TENWD)+
! (B3« fEMIOaTEPATIMO&TEP)
[F (1 .31, 90) FansS(l) = FAUSIT) « (=1)
Il =1 ¢+ 1
Enpon
LI B S |
D I
N tOWF AYCAST e
g
e e S NS :Eﬁ1f~ RN RO S e R AN

AD-A159 671 PERFORMANCE EVALUATION OF THE JRS AUTOMATIC WICROCODE
GENERRTING SVSTEH(U) NﬂVﬂL POSTGRADUATE SCHOOL MONTEREY
CR T J NENTON JUN

UNCLASSIFIED F/G 9/2

e

e i i e aaa ol T S S LSS Sl W e PO SO M TR S I
B4
. [

)

25
2.2
lz.o
1.8
I
=

)

[T

[]

™

“w

[)

[]

[

[Ty

[1™

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAV OF STAWAM-IOC)-A

Aot NG o LR K ot PSP R T W SR v gl e L - g~ SO St A ™ " » - .
A VR R RETLTR S
\
\
¥
]
2 \ THIS SJBROUTINE IS WRITTEM IN JRS HLL AND CALCULATES THE
‘ COSINE OF THE ANGLES FROM L TO v DEGREES. THE DEGREES
ARE FIRST CONVERTED TO RADIANS AND THEN THE CHENBYSHEV

X APPROXIMATION IS USED FIND THE VALJE OF THE COSINE, -
X THE LOJP TS EXECJTED K TIMES D ALLOw FOR TIMING OF THE
- SROCENJRE . \

PRIGRAM COSINE: ‘
] INTEGER I'J"('L'wa\‘: . - . :
X REAL PI,TEMP,R1,R2,R3,FACTOR: ~ P
= FEAL ARRAY 1ANS(130);

JOOJ =1 12 K3 \ TO0P TO CONTROL THE MNUMBER OF (IVvES

THE COSIVES ARE CALCULATEN \ .

N 30 I = L TU Mz \ LONP 17 COUTROL #HAT AJGLES
2 TO CALCULATE THE COS(NE FOR \
. IF (1 .LE. 90) THEN
% TEMP = ((FLOAT(Y) *x PL)/FACIOPF)
- ELSE
.. T
X [FMP = ((FLOAT(Ve]l) « PT)/FACTUR);
-\ HANS(T) = R1 = (R2*#TEVP*TE¥P) +
N (RIATEVMPATFUPRTE YPaTEYP); -
A)
. \ CHORREZT THE SIGN NF THE A%SaER \
| TE (1 .31. 90) THEN
:: HAMS(TY = (= HAVS(I)Y))
aY
3 FDOY0:
)

SN
N 319

.)

96

PSSP

9 & > T Sty NP D g T M ke L9000 ¥ o Mucn S0 T 0. B0 R S, S8 B Tipes Pt R Qo Pl Rad, Ber SR s Yo An s A e . 7 b B A AR 5 28 g AR A g P 8 o

¥
] APPENDIX C
SORTING/SEARCHING ALGIRITHMS
J
£
. C THIS SJURBROUTINE LNJKS FOR EACH ITTEM N THE
: < ARRAY *KEYS®' STARTING AITH THE FIRST [TEWM AND
C ENDIMG UP NITH THE LAST [TEm, EACH TIVE AN
C ITEY IS FOUND THE INDEX OF THE DESIRED [TEH
C IS CNVUPAREN AITH THE IwNDEX OF THE FOUND 1TEM
A C 10 INSJURE THAT THE CURRPECT ITEW »AS FOUNND,
. C IF AN THMPROPER [ITEV IS FNUND THEN THE COuNT
L C JF FRRIRS IS LNCREVEMNMTED BY OinE,
SUR=DJYTTNE SINARY SFARCH
i PITESER «QUNMT ,RESULT,SIZEL,KEYS,X,UPPER,LONER,],J,
t ERRIRS, F
- Cuany /ZACS/7 KEYSC10000),<0UNT,ESULT, SIZE1,PPER,
. 1 LOWER, L, J,F,ERRIRS, K
- C LOOP TANSUNH EVER ELFHYENT AF THE A3IRAY
. COAND LDI% FOK EACH ZLEMENT ONCE,
- DY J = 1,517€E1
< T OINITIALTZE Toe COMNSTAWTS AvD vARTASLES
g <NINT = 0
{ RESIULT = wpvS(eJd)
-3 JOPER = SIZKI
LIWER = 1
X F = JFAL3F,
t IF (RESILT LT, XKEYSILDAER)) THFY
. RETHRQ:
- ELSE TF (KFSOILT GT, RZYS(iPPFN)) Ture
mE TR
g ELSE
. DY MEdTLE (F .52, JFALSE,)
b T = (JPPF2 # LJMER ¢ 1)/2
-~ [FO QESUL LT, “EYSCIY) Tnfn
3¢ IPPEQY = e
SLSE LF (RESJULT 5T, EYS(1Y) Tmey
LYWER = T+
ELSE 1F (RFSILT JEe XKREYS(T)) THEL
F = .Ii)I}E.
FLSE .
RESILT = =3
F 2 TRUF,
- 97
N

e R T T AT R, T P A m " e p
,..._..-‘.'\. e ‘a __ .~ . -

e

ENDIF

IF (UPPER LT, LONER) THEN
F = ,TRUE,

ELSE
KOUNTY = KOUMT #+1

ENDIF

END DI
ENDIF

IF (I JNE. J) EIRORS = ERRORS + 1
EMD DN

EMD ! OF BIMARY SEAQCH SUBRNDUTIVE

anr

\ 3IMARY SEARCH PRIGRAM wRITTEM IN JRS HLL \
\ WNHEN THE RESULT I3 ASSIGNED A NEGATIVE \
\ VALUE, THERE IS AN ERROR [I4 THE RESJLTS

PROGRAM BSEARCH?

INTEGER ARRAY KEYS(10000);

IATEGER KOUNT,RESHLT,SIZEL,UPPER,LONER,
T»J,FLAG,ERRORS,K;

DO « = 1 TY SIZE1?

KOUNT = 03
RESJLT =
UPPER =
LiIIWER =
FLAG = H
IF (RESULT LT, KEYS(LOAER)) THEN
RESUL Tz =1
ELSE
TF (RESULT ,GT, KEYSOUUIPPER)) hiig't
RESULT= =2
SLSE
DY “HILE (FLAG ,E3. 0);
I = (JPPER ¢ LONMER ¢ 1
LF(RESILT LT, REYS(D)
UPPER = [«
tLSE)
[F (RESJLT GT, XEYS(I)) [IHEN
LIMER = T4
FLSFE
TF (RESULT kW, XEYSC(I)) T4HEM
FLAG =
£LSE
RILH
RES LT
FLAN =
EDIN;
LF (FPPER LT, LNYER) [Tre"
FLAG = 1

= =33

\

ELSF
KAJUNT = a1)Tt
Frofgg

[F (n b, 1) THEN
EWIIRS = FRPOIS ¢+ 1

Q9

N e e et A TN AN AT A T e A e T e R I PR
:ﬁ#&ﬁfh&ﬁ&ﬁﬂ&ﬁﬁ&b&&ﬁﬁiﬁiﬁ&&f*'*’*\"“

S e N e T T e T AT

e gt el m R gL X Rl KW Sl e WL i) Bt gt Waghe it ey e A gy TYITYE

"‘.’\
;
L™
N T THIS IS THE QUICK SORT ALGORITHM IN FORTRAN
e C *Aa' 1S THE ARRAY HILDING THE ITEVS TO BE SORTED
) C ALL INTEGERS IN 'A' ARE GENERATED 8Y THE HARMESS
C 9RNGRAM .
A SUBROITINE SORT
4
' INTEGER I,M,J,P,T,0,K,Q1,X,N,LT,UT,A
COMMON /ACS/ Ty JdeP,eTseX,Q1,X,N,LT(14),uT(11),
‘ 1 A(50000)
g C INITIALIZE THE VARTARLES A4D CONSTANTS
3
X J =z W
- I =1
) ¥y s |
. 200 IF (J = 1 45T, 1) THEN
N = (J + 1)/2
: T = A(P)
’ A(P) = A(D)
- 1 =]
- M 300 K = T ¢ t,0
. [F (A(n) .GT, T) THEN
': DN 291 N = J,%,=1
: [F (A(Q1) LT, T) THEWN
. X = A(K)
a(x) = A(N)
v a(n1) = X
o LN B
) 3710 te0
Y5 EUDIF
201 COMTEIMIE

Vs - 1
" GOTO 140
- 120 EuDIF
" 500 TUNTLHOE
o 140 AC1) = A(A)
; a(l) s 1
. 1F (2% 6T, T+J) THE
- Lic+) = 1
S UT(*) =2 9 = 1
. I = 4 ¢ 1

ZLSE

- LT(2Y =2 Q + 1
< rev)y = J
- J 23 -1
. EMOTF
e v s v o
" 100
2

3070 200
ELSE
IF (1 .GE. J) THEN
b) GOTD tad
: ELSE
IF (ACI) .GT. A(J)Y) THEN
X = ACD)
ACL) A(Jd)
AC)) X
ENDIF
169 Mz M4 e |
’ IF (M 53T, 0) THEM
I = LT(V)
J = JT(4)
GOTg 2930
ENDIF
ENDLF
ENDTF

T

E

(]
w

E"D ! 027

PRJGRAM SORT;

THIS PRIOGRAM SIRTS THE ELEVENTS OF AN ARRAY INTO
ASCENDING 0ORDER, THE METHOID USED TS THE *"RUICKERSNART®
ALGORITHY OF R,S, SCNWEN, ALGORITHM 271, CACvw, vOL,
B, NUM3ER 11, OCTO3ER 1965, THIS VERSION AAS COPIED
SROM THE JRS HLL MANIIAL FOR THE AMGS SYSTEY,

THE ALGORITAY ~URKS AY CONTINUALLY SPLITTING THE ARRAY
INTO PARTS SUCH THAT ALL ELEMENTS IF ONE PART ARE LESS
THAN ALL ELE“ENTS JDF THE OTHFR, “ITH A THIRND PART

IN THE MIDNLE CONSISTING OF A SINGLE ELEVENT,

THE ARRAY T0O BE SORTED IS PRE«SET 4 *a* At THE wJU413ER
IF ELEVENMTS liv THE ARRAY [S§ SET IN MY, 0ON FXIT, THE
SLEMENTS NF ARRAY 'A*' ARE SORTED, \

INTEGER J,M, J,P,T, 0,4, ,X,N;

TUTEGER AWRAY LTV ,UT(14),4(50000);

J = g
[= 15
v s 13

1002 1F (J=1.,G1,1) THEN

SCATLENE 0N
KNI IR N
s a

N3
P o= (Jel)272;
I = a(P)7}
A(P) = A(]):
v = J;2

VI <=[+1 9 33
IF (A(K) 3T, T) THEN
DR
NI JIlsu BPLGANTTY <3
[F (AR LT TY Twp™

DY;
X = A(%x);
A(K) = ACIV);
A(1) = X3
N s Jlel;
Gl 1273
[N ITH
ATV
W = Kel;
GI1Y 1403
JE DD
1292 C¥NTINUE;
DRI
1ue
SRS T e T T e

200

TR,

L R R LM D o e WG P Koo g Pog B VLN 5 R E XK IC QIR
1408 ACTI) = A(3);
A(Q@) = T3 _
IF (2+xQ ,GT., T+J) THEN
DIVH
LrT(vw) = I3
ur(v) = Q=17
I = Ge¢t;
ENDNOD
ELSE
00:
LT(M) = @+t
UtT(vw) = J;
J = Qe=1?
ENDDOS
M = M¢l;
GaTd 1003
ENDOO
ELSE TF (T.5ELJ)) THEN GOTD 160
EL3E
PH
IF (A(1)3T.AC(J)) THEN
nNn;
X = A(T);
A(L) = A(T);
A()Y = x;
EMDDO;
ied: M= Vel:
IF (4,GT,0) TwE
(RVH
I =2 LY(MN;
J = uT((4);
61377 1002
Ennn;
FInDg 3
TP
~fi).
103

e

rr W B ¥

g Yo Bmd SN T D i

RAEE S SR o4 '

el 4, 0,

s ALl

«sa's B A BN

STEVE 2RNOGRAVM IN FIRTRAN IV

COPIED FRDOM RYTE MAGAZINE, JAN 83

THE SIEVE OF ERATOSTHEWES ALGORITHV IDENTIFIES
THE PRIME JUYBERS FRUM 3 10 N, IN THIS CASE

vV = 16,381, THE PIIMES ARE STORED 1IN

AN APRAY HAYED °*PRIMES®' FOR VERIFICATION

I THE ALGORITAM IN THE HARNESS PROGRAM

(S XAt NN g N

SUBWQUTINE SIEVESUB

IITEGER 1,J,%,COUMT,ITER,PRTME, ¥,PRTM¥ES
LNGICAL FLAGS

COMMON /F/ FLAGS(R191)
CoMvON /STORE/Z T1,J,K,C0 INT, TTER,PRIVE,N,PRIMES(1900)

DN 192 ITER = 1,20
CO'INT = O

L |
110 1 = 1,3191
ity FLALS(L)Y = TRUF,

70 191 1T = 11,8191
IF («NU1, FLAGS(I)) GNTN 191
PRIME = I ¢+ 1 + 1
PRIVES(9) = PKrRIVE
M = i ¢+ 1
COUNT = Copul + |
K = [¢ PIDViE
IF (n 3T, &191) GOTN 19}
vl 160 I = k, K19, PRIVE
161 FLAGS(J) = FALSE,
191 CONTTIIE
192 CONTIMUF

gEn Y UF STEVES =

104

I S S P U U R S Y N SN
. . .

T

T Y Ty

PP T A S I S P A DA I T T S S I A Thlh AR M WIS A A A S AT e e~ ot~ St W0 S a0 Bl i e e

\ 4LL VERSIOM OF THE SIEVE OF ERATOSTHENES
THE PROGRAM TDENTIFIES THE PRIME NUMRERS
1 AND N,

PRIGRAY4 SIEVE;

INTEGER I,J,%,COUNT,L,PRIVE,ZERD,M,TEN;
INTEGER ARRAY FLAGS(R191), PRIMES(1900);
V) L = 1 TO TEN;

COUNT = O

=1

01 =1 T) W
FLAGS(T) = 15
ENADO;

YO L =1 T v;

TF (FLAGS(I[) JE3d, 1) THEYL

vng
PRLIYME = T ¢ | +
PRTMES(J) = PRIV
b= 1 ¢ 13
COJiNT = COtair ¢+ Vs
£ = [¢ PRIVE;

-s we

(2 I

DO wA4TLE (» JLE.e)3
FLASS(R) = D7
K = k ¢ PRIYES
Exdpg

€000

£

- DG

BRETANEEN
\

MR ARA(2 a g aesteaud(. prasusesas

(RS Ul Sl S0 WA Vol Sl Nl M A Mg "I m I e S Abal Srea N S A R AES S Siiliang

3UBRLE SOKRT IN FIRIRAN

THE INTEGERS IN ARAY 'A*' ARE SOQRTED INTN
ASCENDING ORDPER 3Y CONTINUALLY YJVING THE
'*WEXT' LARGEST ITEY TO [TS PROPER PQOSITINN

3Y CHECKTING EACH TIME THROJGH THE SORT TO
SEE IF ANy EXCHANGES HAVE 3EEN VADE., TF
YUNE ARE MADE THEZIN THE PROGRAM TERZ]INATES,

€1ICTICICICIONICT OO

SUBICUTINE 3UIRBLE

TJTEGER I ,N,XCHANG,TEYP,A
COMVON /ANCS/ T,N,<CHANG, TEMP,ACI0DUN)

XCHAHG = TuE,
DO wHILE(XCHANG (EN, (FRUE.)

xCHAMS = ,FALSE.

N2 oo]
79 1 = 1,
IF (AC])Y Juie ACIH1)) THEY
TEAP = A(1)
ACI) = A(T+1)
A(L+1) = TEP
XCHANG = TR UE,
EIDTF
E*Yy)
£ P
E*iD !UOF B I43L s

1NA

IN THE ORDERING. THE ALGORITH™ IS I“PRUVED

PR LA SRS Rl gl i B At At S It i - et

s a8 8 2 a &

R Nt

Pe¥als

-
o, -

AR VY

- “...._._-\.._‘. L A T PN
{ :‘\1",.- - ..-\q $.:-‘.'\."%-\‘.$' T I O ‘\-- o .-.’_

\ THIS IS THE 3UBBLE SORT IN JRS HLL
ARRAY ‘'A' HOLDS THE INTEGERS TO BE SORTEN,

PRIGRA4 3uUBL?

INTEGER 1 ,M.XCHANG,TEMP;
INTEGER ARRAY A(10000);

xCHANG = 17
20 WHTLE (XCHANG,NE.D);
LY Y 2 B

XCHANG = 03

Ny =1 10 Y5
TF (A(T).GYA(CT#1)) THEN

DA
TEVP = A(T):
ACT) = A(I+3):
ACILel) = TEVP;
XCHANG = 1)

Frni;
ENizng:

=V H
BN IR

;.‘l)o

17

......
........

-
YRR

iaarpd

BRI
e

. o
e te N N\

i A P Piar

- e e Lt
L Y
DN
LU W)

cn‘nlll

> PN YR

) Nt

Al e s el NN e dea A w A oS SR

COOM0¢)

19

APPENDIX D

317 VANIPULATION ALGORITHUS

3IT MANIPULATION PIOGRAM IN FORTRAN
ARRAY 'A' HULDS THE PREGENERATFD vALUES TO

3E MANIPUJULATED.

N' HAOLOS THE NUM3ER OF

1EMES THE MANIPULATION WILL OCCJR FNR TIMING

2RPOSES.,

SURRQUTINE 3IITHMANTP

[MTEGER I,N,RIT,A

COMMON /ACS/Z T,N,ROT,LAC100000)

0 400 1 = 1,
ACTD)
ACl)
a(rl)
aci)
ACD)
ACD)
ACT)
LY@ S

D END 9

|

TIAND(A(]L),AC]))
JUNTCACTD)
JHOT(A(LY)
JIABRS(AC(CL))
JIRITS(ACT),n,32)
TAMDCACTY A (1))
Lor(A(T),a(l))

THSHFTC(A(CT), 32,32)

B0 §O0OF KIFva P

.
..........

19R

a"a a"a a"#

\ 3ITMANIPJLATIODN PRIGRAM IN JRS HLL. ARRAY ‘A’
40LNS THE VALUES TJ RE MANIPULATED. N IS THE
TOTAL NUYBER OF TIVES THE ITEMS ANILL BE

MANIPULATED., I

1S THE LOOPING VARIABLE, \

PROGRAM BITHANTI;

INTEGER 1,N,ROT;
[YTEGER ARRAY A(100000);

00 I = 1 10
ACI)
ACD)
A(l)
AcCl)
Al
ACDY
A(T)
acr)

ExnDO0;

" ST03;

E"if)o

NH

E T N T Y et e ARSI A "-"'_-‘-‘-‘.".‘.‘.' e NN
SRS .' S '.\ KSR ._‘-'\v -. .v.\ :..‘; \-\'q:‘. O \u...‘ .\.h D . o Cot \ \. \\ \.- EI R

A(T) JAND, ACIL);

A(T) XU, (VWASKI31,0));

ACI) .x0R, (MASK(31,0)):
aBS(A(T))

SAL((ACLI) LAND, (MASK(31,0))),0):
A(T) a0, ACD);

A(T) LR, &(T);

RLLCA(T) ,32)3

109

I IOIOHOCIOIAOIOIOILY OO

) ¢

30

SUBROUTINE BITREV

- m it mtae Ve n .

ARRRAANRRANARNRNARANARRRARANRRARRRARNRRAANRRARANARARARRA A K

X e COYPLEX ARRAY X(24%M)

v = NUMRER OF POINTS

QASED UPON AN FFT FIRST DEVELOPED BY SIGNALS
SCIENCE COPIRATION FOR PROJECT SALESCLERK,

FIRST TWRAMSCRTBRED By LCDR € LAURVICK,
IS

MODIFIED BY LT ™M HARTONG,

SH

A RAPARARARRN RN ERNRRARRARAKRNREARRAKARACRAANAAKAARARARRALN

COVPLEX x(4036),T7
INTEGE? My NV2,MMm] , 4,],K

RFARANGE ARAYe [T RPEVERSAL

VEP X KA

NyR2sM/2

M'lzhe]

Jzl -

DO 30 =1,V
LF(T.3E,.J)
1=x(J1
X(Jr=x(1)
x(ly=sT
£sive
[F(x.3E.J)
J=d =K
=K/7

TH 26

50 17 29

50 To 30

o)
JsJen
REF IR
£ D

110

|

.

W te T e e e -

L AL IS T T e S e T IR e) S]
-rk";.- Rl ',(“""" .‘ ad "". .:.. e L L

T T R L I SR e
2GR PO N, AT

CanC A0 SR aaciis aan a4

.
P IR

2 3 S T B, i, W W M W SR i R A S AT Sl B, S IP R B SRR RN SR e . B aE M g 4

PROGRAM BITREV;

\N RRRRRARARRRARRRNRRARARARRAARARARARRRNARRARRNRRARNL AR

31T REVERSAL FOR FFT = AVMGS HLL VERSIUM

ARRRRARERARANRRARRRNRNARRARARRNRARRARARRARNARARAAKRRAAR

3ASE UPON AN FFT FIRST DEVELOPFD BY SIGNALS
SCIENCE CORP, FIR PROJECT SALESCLERK,

TRANSLATED INTO HLL FOR THE ACS BY LT Y HARTONG
AREARARNARARR AR AAAR A RS AR RARRNRANRARRARAFARAR R AR\

INTEGER Ll,sJoeMyN,L,LEO,LEL,IP,X0O JNT,K,
NV2, M, MNML, P

REAL UREAL,JIYA5,PHASE,COSX,SINX, TREAL, TIVAG,
T2REAL, T2LMAG, TUP,PT,RL,R2,k3,K3;

REAL ARRAY XREAL(4096),XIAG(N1036):
\ REPFEAT 4y TIMES FOR TIMING PURPNOSFS N\
N L =1 Tu 30
\ N = 2xav \
¥y = 13
DY «KNINT = 1 VO 43
v = M & 23
EMDNO;
N IHITIALTZE THE COKSTANTS \
NVP2 = N/2;
g s M e 1
) = 13
\ REAIRANSE AVYRAYe SIT QFvERSL \
21 =2 v T NMt;
IF (1,G3F,.T) THFW ROT0 253

TREAL = xkFEAL(T);
TIVAG s XT2an(]):

XRTAL(T) = xREALCL);
xIVAG(S) = xXTvAR(T);
(REAL (1) = TREAL;
XIVAS(I) = TIvAG:
2HeRzNV2;
POIF (X,6FE.T) THEY $OTU 303
Js)en;
<=</7;

S ALY

Vs e s s AN

* PR R NN

PN

e 8 8 8«

’

a 8 & a 4 @ ¢ LI Wy

EnNDDO;
STOoP;

END,

,vx s- \

S0T0 263
30:J=J¢K;
ENDDO;

\ END NF LODOP L

112

e NN

\

AU\'V‘

.....

P T e T I I T i

rErIOMOH O

ave 9 n B M

10
» 20
' 30
{
3 40
1 -~
- 30
- 20
70
f 20
N
Al ~
\
)

e 08 SO RES LTS e ae
" "-."f '-. JA"«_M\. PCALY, "." u N ."’\f\ 5

D R e e L T o LBt K0y B ca, <y Punt Sl ¥ ngy o

APPENDIX E

SAMPLE HAINESS SETUP

PROGRAM FACTORIAL

THIS IS THE FACTIRTIAL PRNGRAM, FORTRAN VERSIOM
AN INTEGER IS READ AMD THE FACTORIAL OF THAT
INTEGER (S PRINTED., THE FACTORIAL OF THAT
NUVRER IS CALCILATED 100,000 TIVES BEFORE REING
IRINTED FJR TIVING PURPOSES,

INTEGFR TOTAL, vaALUE, TEMP, CIUNT, ZERU,
1 TTYER, AarIM E, IRET, THST
IWTEGER TIMES, T, V, T, ANG, OHE

COMuNNM /NC87 TOTAL, VALJE, TEYP, CUiNT, ZFRC, OVE

FIRMAT(/,* ENTE? And [NMTEGER 3FTSEEN 1 AND 12',7)
FORAAT(® THE FAZTORTAL °F 'L,I2, ' IS ¢, 1)
FARMAT(/," SACTIRTAL YSTNA FIRTRAN SUIROIUTINE ¢ 174
1 CamanN* /)

FORMAT(/,* FAZTIONRTIAL YSING 1S HLL #lVYH COMupmty)
FNRIUAT(/," FACTIRIAL ISING STRAIGHT FNRTRAN CHDFE
1 NTTH COAMONt /)

FUORVAT(/,' P JI* = ',FS.2,' SECOUDS'/)
FuRvwaT(fe2)

FORVAT(/,! FAZTIRTAL 'ISTING SIRATIGHT FORTRAM

| NTTHO O Caaevntity)

IEAD AT FACTARTAL TU DFIFRAINE

NRPITE(6,10)
READ(S,70) TF 4P

TrltTaLIzZe THE CONRTAGTS

FTT4F3 = 100009
Count = FIAES L «8€Q OF TTveS T EXECUTE LO0P

THLS PART T35 STRALZAT FOOTRANM Nl THIIT CuvATY

AarRITE(6,90)

113

- * " e "8 a® .,

L “
v iy L\.e},mv..ul

IF (.NOT, LTRSINITTIMER(HANDLE)) CALL ERR
DO WNHILE (C .GT, M)

C=¢C-=-1
v =1
ANS =)

NO AHILE (Vv .GT, 0)
ANS = ANS ~ ¥
V=yve-1
END DO
EnD DN
IF (o307, LIABSTATTIMFR(2, TTVMER,HANDLE)) CALL E4R
ARfTF(6,20) T, ANS
ARITECH,60) FLOAT(TINMER)I/ZI00,0
C THIS IS THE STRAIGHT FORTRAM CUDE VERPSIUYM &1TH Cunvy.y
WRITECOo,51)

Chunl = TIMES
TTAL = OuE

IF (01, LTGBINVITTIYER(HAMDLE)Y CALL EPR

DONHTLE (COUNT ,5T,)
CAIT = CIUNT = |
VAL IE = TEV2
TOTAL = NONE

N 4 TLE (vALYE 5T, O)
1D78L = TOTAL » vALIIE
VAL IE = VAt iiE = o
K DO
END DD

IF (W01, LTRRSTATTIVFRI?2,TTVER, AANDLF))Y CALL FRR

sRITE(6,P20) TEMD, TOTAL
ARTTE(H,60) FLOAT(IIVFR)IZI0N,0

114

e e L A T AR A s NN R € T A TR TR W T L N A A Y. S0

C THIS PART IS A SUBIUUTINE CALL IN FORTRAN «ITH CAMUJYN

CNUNT = TIMES
TOTAL = ONME
ARITE(6,30)

IF (JNOT, LIBSINITTIMER(HMANNDLF)) CALL EPR
CALL FAC
IF (.,NOT, LIBSSTATTIMER(2,TIVMER,HANDLE)) CALL ERR
AR[TF(6,20) TEMP, TOTAL
ARITE(6,60) FLIOAT(TIMER)/Z100.0
C THIS PART HSES JRS HLL wITH COMMON

TOTAL = OVt
Chynr s TIMES

ARITE(b,40)
IF (o307, LIBERINITVIVMFR(HANDLE)) CallL ERK
CALL XFCC(YDTAL, IKET, INST)
[F (N7, LIBRSTATIIMER(2,TIVER,4ANDLF)) CALL E7?R

ARITE(b,24) TEY2, [OTAL
ywWilTF(6,60) FLIATITTAERYIZ100,0

E D

2OTHE FACTIRIAL SU3RIVIINE Y FoRTAay
S INRMNITTINE FAT

I" TEGER TAFAL, VALUE, TENP, Coivl, [E9D, ONE
Cravn /9637 TOTAL, VALE, TEWP, COIvT, ZERG, 'k

DV wdILF (COUNT 5T, ZEDD

TOJINT = COINT =
VALUF 2z TEYP
TUTAL = TME

JO NH{LE (VALUF 6T, 7ZERNM)

TOTAL %~ VALUE
VALUE = 1

TOTAL
VALUE

END DO
eEND DO

END ¢ UF SUMuM

DUl Rt P, AP T n Cew B A et P B ftm Rash ¥ o M R N e e T ig 8oL

S X brte P w1t

\ FACTORIAL PROGRAM IN JRS HLL \

PROGRAM FACTORIAL?

' INTEGER TOTAL, VALUE, TEMP, COuUNT, ZERO, T
D0 AHILE (COUNT .GT, ZERD)S
COUNT = COJNT =« 1;
VALUE = TEVWP;
3 fUraL = 1;
D0 w~41LE (vVALYF _GT, ZERMY?
TOTAL = TI7AL » VALYE:
VALUJE = VALUF = 17
ENDRC;
DRIV
STuP;
Ex.,
’)
d
) 117
4
L]
' ‘ ‘;-F Y :";J;f N RN " f:.‘:o‘:. .-.: :. ;-..;;': -:‘ ..'.:. " ;: :;‘.'.' X ":: il -...:’:;:.;- .- g . _:-: ..;:.‘. .,: ..; :._ .. .‘..:;;‘,..‘:’_ RTCE

T YT -aw—.wx-:—v‘—m‘i‘

¥ - A Jleit, e - - - A S 00, Yha T Wis P St “Dh i) e S Mo S Al - - - _‘:l?_ﬁur _W“'AVTV J—.‘F:- - N 7'_ r'nd

C SUBROUTINE ERR TS JSED FOR SIGNALING ERRORS FROM
C THt TIVING MECHANISM,

SUBROUTTNE ERR

wRITE(6,102)

102 FORVAT (' PRORLEM WITH THE LIBRARY CALL"')

EMD ! OF ERR

118
" -:.’:\'.;-.::'."'.'-'-.::'."'.:;'.;'.':'.‘.:-.::-."-.T;\"-.;:-.::-.:;-.'-;-.:;.\"-.::: P AN Ty PN 'J;.;.:-::.:'-.‘.-.;_-.: NN IR '{.‘-}:-'.'-‘.'-} Y ;;-.;'r

FEYa AT F TR STV

INITIAL DISTRIBUTION LIST

No. Copies

L AN -ha am gn g

1. Defense Technical Information Center 2
Camaron Station :
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

{ pi i aan om s o

3. LtCol Alan A. Ross 2
Code S52Rs
Naval Postgraduate School
Monterey, California 93943-5100

4., Mr. Andrew J. Fox 1
Code 7752
U. S. Naval Research Laboratory
435355 Overlook Ave. S.W.
Washington, D.C. 20375

S. Mr. Erwin H. Warshawsky 1
202 W. Lincoln Ave.
Orange, California 92665

6. Capt Terry J. Newton 2
1734 Alexander Circle
Pueblo, Colorado 81001

X 7. Lt Mark Hartong 1
y P. O. Box 3249
Vallejo, California 94590-9998

8. Department Chairman, Code 352 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

Clhut S SRS . L dPem g

9. Professor H. H. Loomis 1
Code 62Lm
Naval Postgraduate School
Monterey, California 93943-5100

10.

Coaputer Technology Prograss
Code 37

Naval Postgraduate School
Monterey, California 93943-5100

R MAAAPPN R ke B P T

»

-~

